ﻻ يوجد ملخص باللغة العربية
Recently, a bright coherent radio burst with millisecond duration, reminiscent of cosmological fast radio bursts (FRBs), was co-detected with an anomalously-hard X-ray burst from a Galactic magnetar SGR 1935$+$2154. We investigate the possibility that the event was triggered by a deposition of a magnetic energy in a localized region of the magnetosphere, thereby producing a so-called trapped fireball (FB) and simultaneously launching relativistic outflows. We show that the thermal component of the X-ray burst spectrum is consistent with a trapped FB with an average temperature of a few hundred keV and a size of $sim10^5$ cm. Meanwhile, the non-thermal component of the X-ray burst and the coherent radio burst may arise from relativistic outflows. We calculate the dynamical evolution of the outflow, launched with an energy budget $sim10^{39}mbox{-}10^{40}$ erg comparable to that of the trapped FB, for a variety of baryon load $eta$ and initial magnetization $sigma_0$ parameters. If both the hard X-ray and radio bursts are produced by the energy dissipation of the outflow, the properties can be constrained by the conditions for photon escape and the intrinsic timing offset of $lesssim 10$ ms among the radio and X-ray burst spikes. We show that the hard X-ray bursts need to be generated at $r_{rm X}gtrsim10^{8}$ cm from the stellar surface, irrespective of the emission mechanism. Particularly in the case of shock dissipation, the outflow should accelerate up to a Lorentz factor of $Gamma gtrsim 10^3$ by the time it reaches the outer edge of the magnetosphere and the shock dissipation should take place at $10^{12},mathrm{cm} lesssim r_{rm radio, X} lesssim 10^{14},mathrm{cm}$. In this case, extremely clean ($etagtrsim10^4$) and/or highly magnetized ($sigma_0gtrsim10^3$) outflows are implied, which may be consistent with the rarity of this phenomenon.
Fast radio bursts (FRBs) are millisecond-duration, bright radio signals (fluence $mathrm{0.1 - 100,Jy,ms}$) emitted from extragalactic sources of unknown physical origin. The recent CHIME/FRB and STARE2 detection of an extremely bright (fluence $sim$
A few years after its discovery as a magnetar, SGR J1935+2154 started a new burst-active phase on 2020 April 27, accompanied by a large enhancement of its X-ray persistent emission. Radio single bursts were detected during this activation, strengthen
We report on INTEGRAL observations of the soft $gamma$-ray repeater SGR 1935+2154 performed between 2020 April 28 and May 3. Several short bursts with fluence of $sim10^{-7}-10^{-6}$ erg cm$^{-2}$ were detected by the IBIS instrument in the 20-200 ke
Using numerical simulations we show that low-amplitude Alfven waves from a magnetar quake propagate to the outer magnetosphere and convert to plasmoids (closed magnetic loops) which accelerate from the star, driving blast waves into the magnetar wind
Magnetars are highly magnetized young neutron stars that occasionally produce enormous bursts and flares of X-rays and gamma-rays. Of the approximately thirty magnetars currently known in our Galaxy and Magellanic Clouds, five have exhibited transien