ﻻ يوجد ملخص باللغة العربية
We develop a possibility of generating tensor non-Gaussianity in a kind of anisotropic inflation, where a $U(1)$ gauge field is kinetically coupled to a spectator scalar field. Owing to this coupling, the coherent mode of the electric field appears and softly breaks the isotropy of the Universe. We compute the bispectrum of linearly-polarized tensor perturbations sourced by the gauge field and find that it is strongly red-tilted and has distinctive statistical anisotropies including higher-order multipole moments. Interestingly, the tensor bispectra with the specific combinations of linear polarization modes are dominant, and their amplitudes depend on the different sets of multipole moments. This new type of statistically-anisotropic tensor non-Gaussianity can be potentially testable with the upcoming cosmic microwave background B-mode polarization experiments.
We evaluate the dimensionless non-Gaussianity parameter $h_{_{rm NL}}$, that characterizes the amplitude of the tensor bispectrum, numerically for a class of two field inflationary models such as double inflation, hybrid inflation and aligned natural
We examine the momentum dependence of the bispectrum of two-field inflationary models within the long-wavelength formalism. We determine the sources of scale dependence in the expression for the parameter of non-Gaussianity fNL and study two types of
We present a complete framework for numerical calculation of the power spectrum and bispectrum in canonical inflation with an arbitrary number of light or heavy fields. Our method includes all relevant effects at tree-level in the loop expansion, inc
We examine cosmological perturbations in a dynamical theory of inflation in which an Abelian gauge field couples directly to the inflaton, breaking conformal invariance. When the coupling between the gauge field and the inflaton takes a specific form
The Dirac-Born-Infeld (DBI) action has been widely studied as an interesting example of a model of k-inflation in which the sound speed of the cosmological perturbations differs from unity. In this article we consider a scalar-tensor theory in which