ﻻ يوجد ملخص باللغة العربية
We present a complete framework for numerical calculation of the power spectrum and bispectrum in canonical inflation with an arbitrary number of light or heavy fields. Our method includes all relevant effects at tree-level in the loop expansion, including (i) interference between growing and decaying modes near horizon exit; (ii) correlation and coupling between species near horizon exit and on superhorizon scales; (iii) contributions from mass terms; and (iv) all contributions from coupling to gravity. We track the evolution of each correlation function from the vacuum state through horizon exit and the superhorizon regime, with no need to match quantum and classical parts of the calculation; when integrated, our approach corresponds exactly with the tree-level Schwinger or in-in formulation of quantum field theory. In this paper we give the equations necessary to evolve all two- and three-point correlation functions together with suitable initial conditions. The final formalism is suitable to compute the amplitude, shape, and scale dependence of the bispectrum in models with |fNL| of order unity or less, which are a target for future galaxy surveys such as Euclid, DESI and LSST. As an illustration we apply our framework to a number of examples, obtaining quantitatively accurate predictions for their bispectra for the first time. Two accompanying reports describe publicly-available software packages that implement the method.
We evaluate the dimensionless non-Gaussianity parameter $h_{_{rm NL}}$, that characterizes the amplitude of the tensor bispectrum, numerically for a class of two field inflationary models such as double inflation, hybrid inflation and aligned natural
We examine the momentum dependence of the bispectrum of two-field inflationary models within the long-wavelength formalism. We determine the sources of scale dependence in the expression for the parameter of non-Gaussianity fNL and study two types of
The latest results from PLANCK impose strong constraints on features in the spectrum of the curvature perturbations from inflation. We analyse the possibility of particle production induced by sharp turns of the trajectory in field space in inflation
We compute the covariant three-point function near horizon-crossing for a system of slowly-rolling scalar fields during an inflationary epoch, allowing for an arbitrary field-space metric. We show explicitly how to compute its subsequent evolution us
We develop a possibility of generating tensor non-Gaussianity in a kind of anisotropic inflation, where a $U(1)$ gauge field is kinetically coupled to a spectator scalar field. Owing to this coupling, the coherent mode of the electric field appears a