ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal Evolution of Self-Assembled Lead Halide Perovskite Nanocrystal Superlattices: Effects on Photoluminescence and Energy Transfer

302   0   0.0 ( 0 )
 نشر من قبل Dmitry Baranov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Excitonic/electronic coupling and cooperative interactions in self-assembled lead halide perovskite nanocrystals were reported to give rise to a collective low energy emission peak with accelerated dynamics. Here we report that similar spectroscopic features could appear as a result of the nanocrystal reactivity within the self-assembled superlattices. This is demonstrated by using CsPbBr3 nanocrystal superlattices under room temperature and cryogenic micro-photoluminescence spectroscopy. It is shown that keeping such structures under vacuum, a gradual contraction of the superlattices and subsequent coalescence of the nanocrystals occurs over several days. As a result, a narrow, low energy emission peak is observed at 4 K with a concomitant shortening of the photoluminescence lifetime due to the energy transfer between nanocrystals. When exposed to air, self-assembled CsPbBr3 nanocrystals develop bulk-like CsPbBr3 particles on top of the superlattices. At 4 K, these particles produce a distribution of narrow, low energy emission peaks with short lifetimes and excitation fluence-dependent, oscillatory decays, resembling the features of superfluorescence. Overall, the reactivity of CsPbBr3 nanocrystals dramatically alters the emission of their assemblies, which should not be overlooked when studying collective optoelectronic properties nor confused with superfluorescence effects.



قيم البحث

اقرأ أيضاً

Perovskite solar cells with record power conversion efficiency are fabricated by alloying both hybrid and fully inorganic compounds. While the basic electronic properties of the hybrid perovskites are now well understood, key electronic parameters fo r solar cell performance, such as the exciton binding energy of fully inorganic perovskites, are still unknown. By performing magneto transmission measurements, we determine with high accuracy the exciton binding energy and reduced mass of fully inorganic CsPbX$_3$ perovskites (X=I, Br, and an alloy of these). The well behaved (continuous) evolution of the band gap with temperature in the range $4-270$,K suggests that fully inorganic perovskites do not undergo structural phase transitions like their hybrid counterparts. The experimentally determined dielectric constants indicate that at low temperature, when the motion of the organic cation is frozen, the dielectric screening mechanism is essentially the same both for hybrid and inorganic perovskites, and is dominated by the relative motion of atoms within the lead-halide cage.
171 - Fei Yan , Jun Xing , Guichuan Xing 2018
Lead-halide perovskites have been attracting attention for potential use in solid-state lighting. Following the footsteps of solar cells, the field of perovskite light-emitting diodes (PeLEDs) has been growing rapidly. Their application prospects in lighting, however, remain still uncertain due to a variety of shortcomings in device performance including their limited levels of luminous efficiency achievable thus far. Here we show high-efficiency PeLEDs based on colloidal perovskite nanocrystals (PeNCs) synthesized at room temperature possessing dominant first-order excitonic radiation (enabling a photoluminescence quantum yield of 71% in solid film), unlike in the case of bulk perovskites with slow electron-hole bimolecular radiative recombination (a second-order process). In these PeLEDs, by reaching charge balance in the recombination zone, we find that the Auger nonradiative recombination, with its significant role in emission quenching, is effectively suppressed in low driving current density range. In consequence, these devices reach a record high maximum external quantum efficiency of 12.9% reported to date and an unprecedentedly high power efficiency of 30.3 lm W-1 at luminance levels above 1000 cd m-2 as required for various applications. These findings suggest that, with feasible levels of device performance, the PeNCs hold great promise for their use in LED lighting and displays.
326 - Gabriele Rain`o 2018
An ensemble of emitters can behave significantly different from its individual constituents when interacting coherently via a common light field. After excitation, collective coupling gives rise to an intriguing many-body quantum phenomenon, resultin g in short, intense bursts of light: so-called superfluorescence. Because it requires a fine balance of interaction between the emitters and their decoupling from the environment, together with close identity of the individual emitters, superfluorescence has thus far been observed only in a limited number of systems, such as atomic and molecular gases and semiconductor crystals, and could not be harnessed for applications. For colloidal nanocrystals, however, which are of increasing relevance in a number of opto-electronic applications, the generation of superfluorescent light was precluded by inhomogeneous emission broadening, low oscillator strength, and fast exciton dephasing. Using caesium lead halide (CsPbX3, X = Cl, Br) perovskite nanocrystals that are self-organized into highly ordered three-dimensional superlattices allows us to observe key signatures of superfluorescence: red-shifted emission with more than ten-fold accelerated radiative decay, extension of the first-order coherence time by more than a factor of four, photon bunching, and delayed emission pulses with Burnham-Chiao ringing behaviour at high excitation density. These mesoscopically extended coherent states can be employed to boost opto-electronic device performances and enable entangled multi-photon quantum light sources.
Semiconducting polycrystalline thin films are cheap to produce and can be deposited on flexible substrates, yet high-performance electronic devices usually utilize single-crystal semiconductors, owing to their superior electrical mobilities and longe r diffusion lengths. Here we show that the electrical performance of polycrystalline films of metal-halide perovskites (MHPs) approaches that of single crystals at room temperature. Combining temperature-dependent terahertz conductivity measurements and ab initio calculations we uncover a complete picture of the origins of charge scattering in single crystals and polycrystalline films of CH$_3$NH$_3$PbI$_3$. We show that Frohlich scattering of charge carriers with multiple phonon modes is the dominant mechanism limiting mobility, with grain-boundary scattering further reducing mobility in polycrystalline films. We reconcile the large discrepancy in charge diffusion lengths between single crystals and films by considering photon reabsorption. Thus, polycrystalline films of MHPs offer great promise for devices beyond solar cells, including transistors and modulators.
The relaxation of high-energy hot carriers in semiconductors is known to involve the redistribution of energy between (i) hot and cold carriers and (ii) hot carriers and phonons. Over the past few years, these two processes have been identified in le ad-halide perovskites (LHPs) using ultrafast pump-probe experiments, but the interplay between these processes is not fully understood. Here we present a comprehensive kinetic model to elucidate the individual effects of the hot and cold carriers in bulk and nanocrystal $CsPbBr_{3}$ films obtained from pump-push-probe measurements. In accordance with our previous work, we observe that the cooling dynamics in the materials decelerate as the number of hot carriers increases, which we explain through a hot-phonon bottleneck mechanism. On the other hand, as the number of cold carriers increases, we observe an acceleration of the cooling kinetics in the samples. We describe the interplay of these opposing effects using our model, and by using series of natural approximations, reduce this model to a simple form containing terms for the carrier-carrier and carrier-phonon interactions. The model can be instrumental for evaluating the details of carrier cooling and electron-phonon couplings in a broad range of LHP optoelectronic materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا