ﻻ يوجد ملخص باللغة العربية
Excitonic/electronic coupling and cooperative interactions in self-assembled lead halide perovskite nanocrystals were reported to give rise to a collective low energy emission peak with accelerated dynamics. Here we report that similar spectroscopic features could appear as a result of the nanocrystal reactivity within the self-assembled superlattices. This is demonstrated by using CsPbBr3 nanocrystal superlattices under room temperature and cryogenic micro-photoluminescence spectroscopy. It is shown that keeping such structures under vacuum, a gradual contraction of the superlattices and subsequent coalescence of the nanocrystals occurs over several days. As a result, a narrow, low energy emission peak is observed at 4 K with a concomitant shortening of the photoluminescence lifetime due to the energy transfer between nanocrystals. When exposed to air, self-assembled CsPbBr3 nanocrystals develop bulk-like CsPbBr3 particles on top of the superlattices. At 4 K, these particles produce a distribution of narrow, low energy emission peaks with short lifetimes and excitation fluence-dependent, oscillatory decays, resembling the features of superfluorescence. Overall, the reactivity of CsPbBr3 nanocrystals dramatically alters the emission of their assemblies, which should not be overlooked when studying collective optoelectronic properties nor confused with superfluorescence effects.
Perovskite solar cells with record power conversion efficiency are fabricated by alloying both hybrid and fully inorganic compounds. While the basic electronic properties of the hybrid perovskites are now well understood, key electronic parameters fo
Lead-halide perovskites have been attracting attention for potential use in solid-state lighting. Following the footsteps of solar cells, the field of perovskite light-emitting diodes (PeLEDs) has been growing rapidly. Their application prospects in
An ensemble of emitters can behave significantly different from its individual constituents when interacting coherently via a common light field. After excitation, collective coupling gives rise to an intriguing many-body quantum phenomenon, resultin
Semiconducting polycrystalline thin films are cheap to produce and can be deposited on flexible substrates, yet high-performance electronic devices usually utilize single-crystal semiconductors, owing to their superior electrical mobilities and longe
The relaxation of high-energy hot carriers in semiconductors is known to involve the redistribution of energy between (i) hot and cold carriers and (ii) hot carriers and phonons. Over the past few years, these two processes have been identified in le