ترغب بنشر مسار تعليمي؟ اضغط هنا

Limits to Electrical Mobility in Lead-Halide Perovskite Semiconductors

333   0   0.0 ( 0 )
 نشر من قبل Chelsea Xia
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Semiconducting polycrystalline thin films are cheap to produce and can be deposited on flexible substrates, yet high-performance electronic devices usually utilize single-crystal semiconductors, owing to their superior electrical mobilities and longer diffusion lengths. Here we show that the electrical performance of polycrystalline films of metal-halide perovskites (MHPs) approaches that of single crystals at room temperature. Combining temperature-dependent terahertz conductivity measurements and ab initio calculations we uncover a complete picture of the origins of charge scattering in single crystals and polycrystalline films of CH$_3$NH$_3$PbI$_3$. We show that Frohlich scattering of charge carriers with multiple phonon modes is the dominant mechanism limiting mobility, with grain-boundary scattering further reducing mobility in polycrystalline films. We reconcile the large discrepancy in charge diffusion lengths between single crystals and films by considering photon reabsorption. Thus, polycrystalline films of MHPs offer great promise for devices beyond solar cells, including transistors and modulators.

قيم البحث

اقرأ أيضاً

Previous theoretical calculations show azetidinium has the right radial size to form a 3D perovskite with lead halides [1], and has been shown to impart, as the A-site cation of ABX3 unit, beneficial properties to ferroelectric perovskites [2]. Howev er, there has been very limited research into its use as the cation in lead halide perovskites to date. In this communication we report the synthesis and characterization of azetidinium-based lead mixed halide perovskite colloidal nanocrystals. The mixed halide system is iodine and chlorine unlike other reported nanocrystals in the literature where the halide systems are either iodine/bromine or bromine/chlorine. UV-visible absorbance data, complemented with photoluminescence spectroscopy, reveals an indirect-bandgap of about 1.96 eV for our nanocrystals. Structural characterization using TEM shows two distinct interatomic distances (2.98 +/- 0.15 Angstroms and 3.43 +/- 0.16 Angstroms) and non-orthogonal lattice angles (approximately 112 degrees) intrinsic to the nanocrystals with a probable triclinic structure revealed by XRD. The presence of chlorine and iodine within the nanocrystals is confirmed by EDS spectroscopy. Finally, light-induced electron paramagnetic resonance (LEPR) spectroscopy with PCBM confirms the photoinduced charge transfer capabilities of the nanocrystals. The formation of such semiconducting lead mixed halide perovskite using azetidinium as the cation suggests a promising subclass of hybrid perovskites holding potential for optoelectronic applications such as in solar cells and photodetectors.
Halide perovskites have emerged as disruptive semiconductors for applications including photovoltaics and light emitting devices, with modular optoelectronic properties realisable through composition and dimensionality tuning. Layered Ruddlesden-Popp er perovskites of the form BA2MAn-1PbnI3n+1, where n is the number of lead-halide and methylammonium (MA) sheets spaced by longer butylammonium (BA) cations, are particularly interesting due to their unique two-dimensional character and charge carrier dynamics dominated by strongly bound excitons. However, long-range energy transport through exciton diffusion in these materials is not understood or realised. Here, we employ local time-resolved luminescence mapping techniques to visualise exciton transport in high-quality exfoliated flakes of the BA2MAn-1PbnI3n+1 perovskite family. We uncover two distinct transport regimes, depending on the temperature range studied. At temperatures above 100 K, diffusion is mediated by thermally activated hopping processes between localised states. At lower temperatures, a non-uniform energetic landscape emerges in which exciton transport is dominated by energy funnelling processes to lower energy states, leading to long range transport over hundreds of nanometres even in the absence of exciton-phonon coupling and in the presence of local optoelectronic heterogeneity. Efficient, long-range and switchable excitonic funnelling offers exciting possibilities of controlled directional long-range transport in these 2D materials for new device applications.
The relaxation of high-energy hot carriers in semiconductors is known to involve the redistribution of energy between (i) hot and cold carriers and (ii) hot carriers and phonons. Over the past few years, these two processes have been identified in le ad-halide perovskites (LHPs) using ultrafast pump-probe experiments, but the interplay between these processes is not fully understood. Here we present a comprehensive kinetic model to elucidate the individual effects of the hot and cold carriers in bulk and nanocrystal $CsPbBr_{3}$ films obtained from pump-push-probe measurements. In accordance with our previous work, we observe that the cooling dynamics in the materials decelerate as the number of hot carriers increases, which we explain through a hot-phonon bottleneck mechanism. On the other hand, as the number of cold carriers increases, we observe an acceleration of the cooling kinetics in the samples. We describe the interplay of these opposing effects using our model, and by using series of natural approximations, reduce this model to a simple form containing terms for the carrier-carrier and carrier-phonon interactions. The model can be instrumental for evaluating the details of carrier cooling and electron-phonon couplings in a broad range of LHP optoelectronic materials.
Point defects in metal halide perovskites play a critical role in determining their properties and optoelectronic performance; however, many open questions remain unanswered. In this work, we apply impedance spectroscopy and deep-level transient spec troscopy to characterize the ionic defect landscape in methylammonium lead triiodide ($MAPbI_3$) perovskites in which defects were purposely introduced by fractionally changing the precursor stoichiometry. Our results highlight the profound influence of defects on the electronic landscape, exemplified by their impact on the device built-in potential, and consequently, the open-circuit voltage. Even low ion densities can have an impact on the electronic landscape when both cations and anions are considered as mobile. Moreover, we find that all measured ionic defects fulfil the Meyer--Neldel rule with a characteristic energy connected to the underlying ion hopping process. These findings support a general categorization of defects in halide perovskite compounds.
171 - Fei Yan , Jun Xing , Guichuan Xing 2018
Lead-halide perovskites have been attracting attention for potential use in solid-state lighting. Following the footsteps of solar cells, the field of perovskite light-emitting diodes (PeLEDs) has been growing rapidly. Their application prospects in lighting, however, remain still uncertain due to a variety of shortcomings in device performance including their limited levels of luminous efficiency achievable thus far. Here we show high-efficiency PeLEDs based on colloidal perovskite nanocrystals (PeNCs) synthesized at room temperature possessing dominant first-order excitonic radiation (enabling a photoluminescence quantum yield of 71% in solid film), unlike in the case of bulk perovskites with slow electron-hole bimolecular radiative recombination (a second-order process). In these PeLEDs, by reaching charge balance in the recombination zone, we find that the Auger nonradiative recombination, with its significant role in emission quenching, is effectively suppressed in low driving current density range. In consequence, these devices reach a record high maximum external quantum efficiency of 12.9% reported to date and an unprecedentedly high power efficiency of 30.3 lm W-1 at luminance levels above 1000 cd m-2 as required for various applications. These findings suggest that, with feasible levels of device performance, the PeNCs hold great promise for their use in LED lighting and displays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا