ترغب بنشر مسار تعليمي؟ اضغط هنا

CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations

134   0   0.0 ( 0 )
 نشر من قبل Davis Rempe
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose CaSPR, a method to learn object-centric Canonical Spatiotemporal Point Cloud Representations of dynamically moving or evolving objects. Our goal is to enable information aggregation over time and the interrogation of object state at any spatiotemporal neighborhood in the past, observed or not. Different from previous work, CaSPR learns representations that support spacetime continuity, are robust to variable and irregularly spacetime-sampled point clouds, and generalize to unseen object instances. Our approach divides the problem into two subtasks. First, we explicitly encode time by mapping an input point cloud sequence to a spatiotemporally-canonicalized object space. We then leverage this canonicalization to learn a spatiotemporal latent representation using neural ordinary differential equations and a generative model of dynamically evolving shapes using continuous normalizing flows. We demonstrate the effectiveness of our method on several applications including shape reconstruction, camera pose estimation, continuous spatiotemporal sequence reconstruction, and correspondence estimation from irregularly or intermittently sampled observations.



قيم البحث

اقرأ أيضاً

This paper proposes a correspondence-free method for point cloud rotational registration. We learn an embedding for each point cloud in a feature space that preserves the SO(3)-equivariance property, enabled by recent developments in equivariant neur al networks. The proposed shape registration method achieves three major advantages through combining equivariant feature learning with implicit shape models. First, the necessity of data association is removed because of the permutation-invariant property in network architectures similar to PointNet. Second, the registration in feature space can be solved in closed-form using Horns method due to the SO(3)-equivariance property. Third, the registration is robust to noise in the point cloud because of implicit shape learning. The experimental results show superior performance compared with existing correspondence-free deep registration methods.
109 - Chenxi Xiao , Juan Wachs 2020
Three dimensional (3D) object recognition is becoming a key desired capability for many computer vision systems such as autonomous vehicles, service robots and surveillance drones to operate more effectively in unstructured environments. These real-t ime systems require effective classification methods that are robust to various sampling resolutions, noisy measurements, and unconstrained pose configurations. Previous research has shown that points sparsity, rotation and positional inherent variance can lead to a significant drop in the performance of point cloud based classification techniques. However, neither of them is sufficiently robust to multifactorial variance and significant sparsity. In this regard, we propose a novel approach for 3D classification that can simultaneously achieve invariance towards rotation, positional shift, scaling, and is robust to point sparsity. To this end, we introduce a new feature that utilizes graph structure of point clouds, which can be learned end-to-end with our proposed neural network to acquire a robust latent representation of the 3D object. We show that such latent representations can significantly improve the performance of object classification and retrieval tasks when points are sparse. Further, we show that our approach outperforms PointNet and 3DmFV by 35.0% and 28.1% respectively in ModelNet 40 classification tasks using sparse point clouds of only 16 points under arbitrary SO(3) rotation.
We present a novel compact point cloud representation that is inherently invariant to scale, coordinate change and point permutation. The key idea is to parametrize a distance field around an individual shape into a unique, canonical, and compact vec tor in an unsupervised manner. We firstly project a distance field to a $4$D canonical space using singular value decomposition. We then train a neural network for each instance to non-linearly embed its distance field into network parameters. We employ a bias-free Extreme Learning Machine (ELM) with ReLU activation units, which has scale-factor commutative property between layers. We demonstrate the descriptiveness of the instance-wise, shape-embedded network parameters by using them to classify shapes in $3$D datasets. Our learning-based representation requires minimal augmentation and simple neural networks, where previous approaches demand numerous representations to handle coordinate change and point permutation.
An explainable machine learning method for point cloud classification, called the PointHop method, is proposed in this work. The PointHop method consists of two stages: 1) local-to-global attribute building through iterative one-hop information excha nge, and 2) classification and ensembles. In the attribute building stage, we address the problem of unordered point cloud data using a space partitioning procedure and developing a robust descriptor that characterizes the relationship between a point and its one-hop neighbor in a PointHop unit. When we put multiple PointHop units in cascade, the attributes of a point will grow by taking its relationship with one-hop neighbor points into account iteratively. Furthermore, to control the rapid dimension growth of the attribute vector associated with a point, we use the Saab transform to reduce the attribute dimension in each PointHop unit. In the classification and ensemble stage, we feed the feature vector obtained from multiple PointHop units to a classifier. We explore ensemble methods to improve the classification performance furthermore. It is shown by experimental results that the PointHop method offers classification performance that is comparable with state-of-the-art methods while demanding much lower training complexity.
Conventional methods of 3D object generative modeling learn volumetric predictions using deep networks with 3D convolutional operations, which are direct analogies to classical 2D ones. However, these methods are computationally wasteful in attempt t o predict 3D shapes, where information is rich only on the surfaces. In this paper, we propose a novel 3D generative modeling framework to efficiently generate object shapes in the form of dense point clouds. We use 2D convolutional operations to predict the 3D structure from multiple viewpoints and jointly apply geometric reasoning with 2D projection optimization. We introduce the pseudo-renderer, a differentiable module to approximate the true rendering operation, to synthesize novel depth maps for optimization. Experimental results for single-image 3D object reconstruction tasks show that we outperforms state-of-the-art methods in terms of shape similarity and prediction density.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا