ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral functions of CVD grown MoS$_2$ monolayers after chemical transfer onto Au surface

106   0   0.0 ( 0 )
 نشر من قبل Sanghyo Lee
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent rise of van der Waals (vdW) crystals has opened new prospects for studying versatile and exotic fundamental physics with future device applications such as twistronics. Even though the recent development on Angle-resolved photoemission spectroscopy (ARPES) with Nano-focusing optics, making clean surfaces and interfaces of chemically transferred crystals have been challenging to obtain high-resolution ARPES spectra. Here, we show that by employing nano-ARPES with submicron sized beam and polystyrene-assisted transfer followed by annealing process in ultra-high vacuum environment, remarkably clear ARPES spectral features such as spin-orbit splitting and band renormalization of CVD-grown, monolayered MoS2 can be measured. Our finding paves a way to exploit chemically transferred crystals for measuring high-resolution ARPES spectra to observe exotic quasi-particles in vdW heterostructures.

قيم البحث

اقرأ أيضاً

We study photoluminescence (PL) spectra and exciton dynamics of MoS$_2$ monolayer (ML) grown by the chemical vapor deposition technique. In addition to the usual direct A-exciton line we observe a low-energy line of bound excitons dominating the PL s pectra at low temperatures. This line shows unusually strong redshift with increase in the temperature and submicrosecond time dynamics suggesting indirect nature of the corresponding transition. By monitoring temporal dynamics of exciton PL distribution in the ML plane we observe diffusive transport of A-excitons and measure the diffusion coefficient up to $40$~cm$^2$/s at elevated excitation powers. The bound exciton spatial distribution spreads over tens of microns in $sim 1$ $mu$s. However this spread is subdiffusive, characterized by a significant slowing down with time. The experimental findings are interpreted as a result of the interplay between the diffusion and Auger recombination of excitons.
We investigate the excitonic spectrum of MoS$_2$ monolayers and calculate its optical absorption properties over a wide range of energies. Our approach takes into account the anomalous screening in two dimensions and the presence of a substrate, both cast by a suitable effective Keldysh potential. We solve the Bethe-Salpeter equation using as a basis a Slater-Koster tight-binding model parameterized to fit ab initio MoS$_2$ band structure calculations. The resulting optical conductivity is in good quantitative agreement with existing measurements up to ultraviolet energies. We establish that the electronic contributions to the C excitons arise not from states in the vicinity of the $Gamma$ point, but from a set of $k$-points over extended portions of the Brillouin zone. Our results reinforce the advantages of approaches based on effective models to expeditiously explore the properties and tunability of excitons in TMD systems.
Magneto transmission spectroscopy was employed to study the valley Zeeman effect in large-area monolayer MoS$_{2}$ and MoSe$_{2}$. The extracted values of the valley g-factors for both A- and B-exciton were found be similar with $g_v simeq -4.5$. The samples are expected to be strained due to the CVD growth on sapphire at high temperature ($700^circ$C). However, the estimated strain, which is maximum at low temperature, is only $simeq 0.2%$. Theoretical considerations suggest that the strain is too small to significantly influence the electronic properties. This is confirmed by the measured value of valley g-factor, and the measured temperature dependence of the band gap, which are almost identical for CVD and mechanically exfoliated MoS$_2$.
Chemical vapor deposition (CVD) allows growing transition metal dichalcogenides (TMDs) over large surface areas on inexpensive substrates. In this work, we correlate the structural quality of CVD grown MoS$_2$ monolayers (MLs) on SiO$_2$/Si wafers st udied by high-resolution transmission electron microscopy (HRTEM) with high optical quality revealed in optical emission and absorption from cryogenic to ambient temperatures. We determine a defect concentration of the order of 10$^{13}$ cm$^{-2}$ for our samples with HRTEM. To have access to the intrinsic optical quality of the MLs, we remove the MLs from the SiO$_2$ growth substrate and encapsulate them in hBN flakes with low defect density, to reduce the detrimental impact of dielectric disorder. We show optical transition linewidth of 5 meV at low temperature (T=4 K) for the free excitons in emission and absorption. This is comparable to the best ML samples obtained by mechanical exfoliation of bulk material. The CVD grown MoS$_2$ ML photoluminescence is dominated by free excitons and not defects even at low temperature. High optical quality of the samples is further confirmed by the observation of excited exciton states of the Rydberg series. We optically generate valley coherence and valley polarization in our CVD grown MoS$_2$ layers, showing the possibility for studying spin and valley physics in CVD samples of large surface area.
Through a combination of monitoring the Raman spectral characteristics of 2D materials grown on copper catalyst layers, and wafer scale automated detection of the fraction of transferred material, we reproducibly achieve transfers with over 97.5% mon olayer hexagonal boron nitride and 99.7% monolayer graphene coverage, for up to 300 mm diameter wafers. We find a strong correlation between the transfer coverage obtained for graphene and the emergence of a lower wavenumber 2D- peak component, with the concurrent disappearance of the higher wavenumber 2D+ peak component during oxidation of the catalyst surface. The 2D peak characteristics can therefore act as an unambiguous predictor of the success of the transfer. The combined monitoring and transfer process presented here is highly scalable and amenable for roll-to-roll processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا