ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Dark Matter Self-interaction with Ultra-faint Dwarf Galaxies

343   0   0.0 ( 0 )
 نشر من قبل Shin Kobayashi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Self-interacting dark matter (SIDM) has gathered growing attention as a solution to the small scale problems of the collisionless cold dark matter (DM). We investigate the SIDM using stellar kinematics of 23 ultra-faint dwarf (UFD) galaxies with the phenomenological SIDM halo model. The UFDs are DM-dominated and have less active star formation history. Accordingly, they are the ideal objects to test the SIDM, as their halo profiles are least affected by the baryonic feedback processes. We found no UFDs favor non-zero self-interaction and some provide stringent constraints within the simple SIDM modeling. Our result challenges the simple modeling of the SIDM, which urges further investigation of the subhalo dynamical evolution of the SIDM.



قيم البحث

اقرأ أيضاً

We present a new technique to probe the central dark matter (DM) density profile of galaxies that harnesses both the survival and observed properties of star clusters. As a first application, we apply our method to the `ultra-faint dwarf Eridanus II (Eri II) that has a lone star cluster ~45 pc from its centre. Using a grid of collisional $N$-body simulations, incorporating the effects of stellar evolution, external tides and dynamical friction, we show that a DM core for Eri II naturally reproduces the size and the projected position of its star cluster. By contrast, a dense cusped galaxy requires the cluster to lie implausibly far from the centre of Eri II (>1 kpc), with a high inclination orbit that must be observed at a particular orbital phase. Our results, therefore, favour a dark matter core. This implies that either a cold DM cusp was `heated up at the centre of Eri II by bursty star formation, or we are seeing an evidence for physics beyond cold DM.
166 - Timothy D. Brandt 2016
I show that a recently discovered star cluster near the center of the ultra-faint dwarf galaxy Eridanus II provides strong constraints on massive compact halo objects (MACHOs) of >~5 M_sun as the main component of dark matter. MACHO dark matter will dynamically heat the cluster, driving it to larger sizes and higher velocity dispersions until it dissolves into its host galaxy. The stars in compact ultra-faint dwarf galaxies themselves will be subject to the same dynamical heating; the survival of at least ten such galaxies places independent limits on MACHO dark matter of masses >~10 M_sun. Both Eri IIs cluster and the compact ultra-faint dwarfs are characterized by stellar masses of just a few thousand M_sun and half-light radii of 13 pc (for the cluster) and ~30 pc (for the ultra-faint dwarfs). These systems close the ~20--100 M_sun window of allowed MACHO dark matter and combine with existing constraints from microlensing, wide binaries, and disk kinematics to rule out dark matter composed entirely of MACHOs from ~10$^{-7}$ M_sun up to arbitrarily high masses.
154 - Junsong Cang , Yu Gao , Yin-Zhe Ma 2020
Dark Matter (DM) annihilation and decay during the Dark Ages can affect the cosmic ionization history and leave imprints in the Cosmic Microwave Background (CMB) anisotropy spectra. CMB polarization anisotropy can be sensitive to such energy injectio n at higher redshifts and help reducing degeneracy with primordial spectral parameters in $Lambda$CDM and astrophysical ionization processes during reionization. In light of a number of upcoming CMB polarization experiments, such as AdvACTPol, AliCPT, CLASS, Simons Observatory, Simons Array, SPT-3G, we estimate their prospective sensitivity in probing dark matter annihilation and decay signals. We find that future missions have 95% C.L. projected limits on DM decay and annihilation rates to orders of $Gamma_chi (tau_{chi}^{-1}) sim 10^{-27}{rm{s}}^{-1}$ and $left<sigma v right>/m_{chi} sim 10^{-29}{rm{cm^3s^{-1}GeV^{-1}}}$ respectively, significantly improving the sensitivity to DM from current experimental bounds.
We investigate cosmological constraints on an energy density contribution of elastic dark matter self-interactions characterized by the mass of the exchange particle and coupling constant. Because of the expansion behaviour in a Robertson-Walker metr ic we investigate self-interacting dark matter that is warm in the case of thermal relics. The scaling behaviour of dark matter self-interaction energy density shows that it can be the dominant contribution (only) in the very early universe. Thus its impact on primordial nucleosynthesis is used to restrict the interaction strength, which we find to be at least as strong as the strong interaction. Furthermore we explore dark matter decoupling in a self-interaction dominated universe, which is done for the self-interacting warm dark matter as well as for collisionless cold dark matter in a two component scenario. We find that strong dark matter self-interactions do not contradict super-weak inelastic interactions between self-interacting dark matter and baryonic matter and that the natural scale of collisionless cold dark matter decoupling exceeds the weak scale and depends linearly on the particle mass. Finally structure formation analysis reveals a linear growing solution during self-interaction domination; however, only non-cosmological scales are enhanced.
We present new constraints on the star formation histories of the ultra-faint dwarf (UFD) galaxies, using deep photometry obtained with the Hubble Space Telescope (HST). A galaxy class recently discovered in the Sloan Digital Sky Survey, the UFDs app ear to be an extension of the classical dwarf spheroidals to low luminosities, offering a new front in efforts to understand the missing satellite problem. They are the least luminous, most dark-matter dominated, and least chemically-evolved galaxies known. Our HST survey of six UFDs seeks to determine if these galaxies are true fossils from the early universe. We present here the preliminary analysis of three UFD galaxies: Hercules, Leo IV, and Ursa Major I. Classical dwarf spheroidals of the Local Group exhibit extended star formation histories, but these three Milky Way satellites are at least as old as the ancient globular cluster M92, with no evidence for intermediate-age populations. Their ages also appear to be synchronized to within ~1 Gyr of each other, as might be expected if their star formation was truncated by a global event, such as reionization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا