ترغب بنشر مسار تعليمي؟ اضغط هنا

Network comparison and the within-ensemble graph distance

75   0   0.0 ( 0 )
 نشر من قبل Brennan Klein
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantifying the differences between networks is a challenging and ever-present problem in network science. In recent years a multitude of diverse, ad hoc solutions to this problem have been introduced. Here we propose that simple and well-understood ensembles of random networks (such as ErdH{o}s-R{e}nyi graphs, random geometric graphs, Watts-Strogatz graphs, the configuration model, and preferential attachment networks) are natural benchmarks for network comparison methods. Moreover, we show that the expected distance between two networks independently sampled from a generative model is a useful property that encapsulates many key features of that model. To illustrate our results, we calculate this within-ensemble graph distance and related quantities for classic network models (and several parameterizations thereof) using 20 distance measures commonly used to compare graphs. The within-ensemble graph distance provides a new framework for developers of graph distances to better understand their creations and for practitioners to better choose an appropriate tool for their particular task.

قيم البحث

اقرأ أيضاً

We investigate the impact of borders on the topology of spatially embedded networks. Indeed territorial subdivisions and geographical borders significantly hamper the geographical span of networks thus playing a key role in the formation of network c ommunities. This is especially important in scientific and technological policy-making, highlighting the interplay between pressure for the internationalization to lead towards a global innovation system and the administrative borders imposed by the national and regional institutions. In this study we introduce an outreach index to quantify the impact of borders on the community structure and apply it to the case of the European and US patent co-inventors networks. We find that (a) the US connectivity decays as a power of distance, whereas we observe a faster exponential decay for Europe; (b) European network communities essentially correspond to nations and contiguous regions while US communities span multiple states across the whole country without any characteristic geographic scale. We confirm our findings by means of a set of simulations aimed at exploring the relationship between different patterns of cross-border community structures and the outreach index.
Network embedding techniques aim at representing structural properties of graphs in geometric space. Those representations are considered useful in downstream tasks such as link prediction and clustering. However, the number of graph embedding method s available on the market is large, and practitioners face the non-trivial choice of selecting the proper approach for a given application. The present work attempts to close this gap of knowledge through a systematic comparison of eleven different methods for graph embedding. We consider methods for embedding networks in the hyperbolic and Euclidean metric spaces, as well as non-metric community-based embedding methods. We apply these methods to embed more than one hundred real-world and synthetic networks. Three common downstream tasks -- mapping accuracy, greedy routing, and link prediction -- are considered to evaluate the quality of the various embedding methods. Our results show that some Euclidean embedding methods excel in greedy routing. As for link prediction, community-based and hyperbolic embedding methods yield overall performance superior than that of Euclidean-space-based approaches. We compare the running time for different methods and further analyze the impact of different network characteristics such as degree distribution, modularity, and clustering coefficients on the quality of the different embedding methods. We release our evaluation framework to provide a standardized benchmark for arbitrary embedding methods.
Networks provide an informative, yet non-redundant description of complex systems only if links represent truly dyadic relationships that cannot be directly traced back to node-specific properties such as size, importance, or coordinates in some embe dding space. In any real-world network, some links may be reducible, and others irreducible, to such local properties. This dichotomy persists despite the steady increase in data availability and resolution, which actually determines an even stronger need for filtering techniques aimed at discerning essential links from non-essential ones. Here we introduce a rigorous method that, for any desired level of statistical significance, outputs the network backbone that is irreducible to the local properties of nodes, i.e. their degrees and strengths. Unlike previous approaches, our method employs an exact maximum-entropy formulation guaranteeing that the filtered network encodes only the links that cannot be inferred from local information. Extensive empirical analysis confirms that this approach uncovers essential backbones that are otherwise hidden amidst many redundant relationships and inaccessible to other methods. For instance, we retrieve the hub-and-spoke skeleton of the US airport network and many specialised patterns of international trade. Being irreducible to local transportation and economic constraints of supply and demand, these backbones single out genuinely higher-order wiring principles.
There are different measures to classify a networks data set that, depending on the problem, have different success. For example, the resistance distance and eigenvector centrality measures have been successful in revealing ecological pathways and di fferentiating between biomedical images of patients with Alzheimers disease, respectively. The resistance distance measures the effective distance between any two nodes of a network taking into account all possible shortest paths between them and the eigenvector centrality measures the relative importance of each node in the network. However, both measures require knowing the networks eigenvalues and eigenvectors -- eigenvectors being the more computationally demanding task. Here, we show that we can closely approximate these two measures using only the eigenvalue spectra, where we illustrate this by experimenting on elemental resistor circuits and paradigmatic network models -- random and small-world networks. Our results are supported by analytical derivations, showing that the eigenvector centrality can be perfectly matched in all cases whilst the resistance distance can be closely approximated. Our underlying approach is based on the work by Denton, Parke, Tao, and Zhang [arXiv:1908.03795 (2019)], which is unrestricted to these topological measures and can be applied to most problems requiring the calculation of eigenvectors.
This chapter introduces statistical methods used in the analysis of social networks and in the rapidly evolving parallel-field of network science. Although several instances of social network analysis in health services research have appeared recentl y, the majority involve only the most basic methods and thus scratch the surface of what might be accomplished. Cutting-edge methods using relevant examples and illustrations in health services research are provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا