ترغب بنشر مسار تعليمي؟ اضغط هنا

Finding the Resistance Distance and Eigenvector Centrality from the Networks Eigenvalues

83   0   0.0 ( 0 )
 نشر من قبل Nicol\\'as Rubido
 تاريخ النشر 2020
والبحث باللغة English
 تأليف Carace Gutierrez




اسأل ChatGPT حول البحث

There are different measures to classify a networks data set that, depending on the problem, have different success. For example, the resistance distance and eigenvector centrality measures have been successful in revealing ecological pathways and differentiating between biomedical images of patients with Alzheimers disease, respectively. The resistance distance measures the effective distance between any two nodes of a network taking into account all possible shortest paths between them and the eigenvector centrality measures the relative importance of each node in the network. However, both measures require knowing the networks eigenvalues and eigenvectors -- eigenvectors being the more computationally demanding task. Here, we show that we can closely approximate these two measures using only the eigenvalue spectra, where we illustrate this by experimenting on elemental resistor circuits and paradigmatic network models -- random and small-world networks. Our results are supported by analytical derivations, showing that the eigenvector centrality can be perfectly matched in all cases whilst the resistance distance can be closely approximated. Our underlying approach is based on the work by Denton, Parke, Tao, and Zhang [arXiv:1908.03795 (2019)], which is unrestricted to these topological measures and can be applied to most problems requiring the calculation of eigenvectors.



قيم البحث

اقرأ أيضاً

Complex networks or graphs provide a powerful framework to understand importance of individuals and their interactions in real-world complex systems. Several graph theoretical measures have been introduced to access importance of the individual in sy stems represented by networks. Particularly, eigenvector centrality (EC) measure has been very popular due to its ability in measuring importance of the nodes based on not only number of interactions they acquire but also particular structural positions they have in the networks. Furthermore, the presence of certain structural features, such as the existence of high degree nodes in a network is recognized to induce localization transition of the principal eigenvector (PEV) of the networks adjacency matrix. Localization of PEV has been shown to cause difficulties in assigning centrality weights to the nodes based on the EC. We revisit PEV localization and its relation with failure of EC problem, and by using simple model networks demonstrate that in addition to the localization of the PEV, the delocalization of PEV may also create difficulties for using EC as a measure to rank the nodes. Our investigation while providing fundamental insight to the relation between PEV localization and centrality of nodes in networks, suggests that for the networks having delocalized PEVs, it is better to use degree centrality measure to rank the nodes.
In this paper we apply techniques of complex network analysis to data sources representing public funding programs and discuss the importance of the considered indicators for program evaluation. Starting from the Open Data repository of the 2007-2013 Italian Program Programma Operativo Nazionale Ricerca e Competitivit`a (PON R&C), we build a set of data models and perform network analysis over them. We discuss the obtained experimental results outlining interesting new perspectives that emerge from the application of the proposed methods to the socio-economical evaluation of funded programs.
It is generally accepted that neighboring nodes in financial networks are negatively assorted with respect to the correlation between their degrees. This feature would play an important damping role in the market during downturns (periods of distress ) since this connectivity pattern between firms lowers the chances of auto-amplifying (the propagation of) distress. In this paper we explore a trade-network of industrial firms where the nodes are suppliers or buyers, and the links are those invoices that the suppliers send out to their buyers and then go on to present to their bank for discounting. The network was collected by a large Italian bank in 2007, from their intermediation of the sales on credit made by their clients. The network also shows dissortative behavior as seen in other studies on financial networks. However, when looking at the credit rating of the firms, an important attribute internal to each node, we find that firms that trade with one another share overwhelming similarity. We know that much data is missing from our data set. However, we can quantify the amount of missing data using information exposure, a variable that connects social structure and behavior. This variable is a ratio of the sales invoices that a supplier presents to their bank over their total sales. Results reveal a non-trivial and robust relationship between the information exposure and credit rating of a firm, indicating the influence of the neighbors on a firms rating. This methodology provides a new insight into how to reconstruct a network suffering from incomplete information.
This paper analyses the impact of random failure or attack on the public transit networks of London and Paris in a comparative study. In particular we analyze how the dysfunction or removal of sets of stations or links (rails, roads, etc.) affects th e connectivity properties within these networks. We show how accumulating dysfunction leads to emergent phenomena that cause the transportation system to break down as a whole. Simulating different directed attack strategies, we find minimal strategies with high impact and identify a-priory criteria that correlate with the resilience of these networks. To demonstrate our approach, we choose the London and Paris public transit networks. Our quantitative analysis is performed in the frames of the complex network theory - a methodological tool that has emerged recently as an interdisciplinary approach joining methods and concepts of the theory of random graphs, percolation, and statistical physics. In conclusion we demonstrate that taking into account cascading effects the network integrity is controlled for both networks by less than 0.5 % of the stations i.e. 19 for Paris and 34 for London.
Many real-world complex systems are well represented as multilayer networks; predicting interactions in those systems is one of the most pressing problems in predictive network science. To address this challenge, we introduce two stochastic block mod els for multilayer and temporal networks; one of them uses nodes as its fundamental unit, whereas the other focuses on links. We also develop scalable algorithms for inferring the parameters of these models. Because our models describe all layers simultaneously, our approach takes full advantage of the information contained in the whole network when making predictions about any particular layer. We illustrate the potential of our approach by analyzing two empirical datasets---a temporal network of email communications, and a network of drug interactions for treating different cancer types. We find that modeling all layers simultaneously does result, in general, in more accurate link prediction. However, the most predictive model depends on the dataset under consideration; whereas the node-based model is more appropriate for predicting drug interactions, the link-based model is more appropriate for predicting email communication.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا