ﻻ يوجد ملخص باللغة العربية
In this paper we explore nonabelian gauged linear sigma models (GLSMs) for symplectic and orthogonal Grassmannians and flag manifolds, checking e.g. global symmetries, Witten indices, and Calabi-Yau conditions, following up a proposal in the math community. For symplectic Grassmannians, we check that the Coulomb branch vacua of the GLSM are consistent with ordinary and equivariant quantum cohomology of the space.
In this work we give a gauged linear sigma model (GLSM) realization of pairs of homologically projective dual Calabi-Yaus that have recently been constructed in the mathematics literature. Many of the geometries can be realized mathematically in term
We investigate the Yangian symmetry of scattering amplitudes in N=4 super Yang-Mills theory and show that its formulations in twistor and momentum twistor space can be interchanged. In particular we show that the full symmetry can be thought of as th
In this paper we study the quantum sheaf cohomology of Grassmannians with deformations of the tangent bundle. Quantum sheaf cohomology is a (0,2) deformation of the ordinary quantum cohomology ring, realized as the OPE ring in A/2-twisted theories. Q
We study the algebra of Wilson line operators in three-dimensional N=2 supersymmetric U(M) gauge theories with a Higgs phase related to a complex Grassmannian Gr(M,N), and its connection to K-theoretic Gromov-Witten invariants for Gr(M,N). For differ
In this paper we discuss physical derivations of the quantum K theory rings of symplectic Grassmannians. We compare to standard presentations in terms of Schubert cycles, but most of our work revolves around a proposed description in terms of two oth