ﻻ يوجد ملخص باللغة العربية
We study the algebra of Wilson line operators in three-dimensional N=2 supersymmetric U(M) gauge theories with a Higgs phase related to a complex Grassmannian Gr(M,N), and its connection to K-theoretic Gromov-Witten invariants for Gr(M,N). For different Chern-Simons levels, the Wilson loop algebra realizes either the quantum cohomology of Gr(M,N), isomorphic to the Verlinde algebra for U(M), or the quantum K-theoretic ring of Schubert structure sheaves studied by mathematicians, or closely related algebras.
In this paper we discuss physical derivations of the quantum K theory rings of symplectic Grassmannians. We compare to standard presentations in terms of Schubert cycles, but most of our work revolves around a proposed description in terms of two oth
The 2d gauged linear sigma model (GLSM) gives a UV model for quantum cohomology on a Kahler manifold X, which is reproduced in the IR limit. We propose and explore a 3d lift of this correspondence, where the UV model is the N=2 supersymmetric 3d gaug
We study a perturbation family of N=2 3d gauge theories and its relation to quantum K-theory. A 3d version of the Intriligator-Vafa formula is given for the quantum K-theory ring of Grassmannians. The 3d BPS half-index of the gauge theory is connecte
The disk partition function of certain 3d N=2 supersymmetric gauge theories computes a quantum K-theoretic ring for Kahler manifolds X. We study the 3d gauge theory/quantum K-theory correspondence for global and local Calabi-Yau manifolds with severa
We study the relation between quantum affine algebras of type A and Grassmannian cluster algebras. Hernandez and Leclerc described an isomorphism from the Grothendieck ring of a certain subcategory $mathcal{C}_{ell}$ of $U_q(hat{mathfrak{sl}_n})$-mod