ترغب بنشر مسار تعليمي؟ اضغط هنا

Activity and mood-based routing for autonomous vehicles

71   0   0.0 ( 0 )
 نشر من قبل Ankit Kariryaa
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A significant amount of our daily lives is dedicated to driving, leading to an unavoidable exposure to driving-related stress. The rise of autonomous vehicles will likely lessen the extent of this stress and enhance the routine traveling experience. Yet, no matter how diverse they may be, current routing criteria are limited to considering only the passive preferences of a vehicles users. Thus, to enhance the overall driving experience in autonomous vehicles, we advocate here for the diversification of routing criteria, by additionally emphasizing activity- and mood-based requirements.



قيم البحث

اقرأ أيضاً

Driving and music listening are two inseparable everyday activities for millions of people today in the world. Considering the high correlation between music, mood and driving comfort and safety, it makes sense to use appropriate and intelligent musi c recommendations based on the mood of drivers and songs in the context of car driving. The objective of this paper is to present the project of a contextual mood-based music recommender system capable of regulating the drivers mood and trying to have a positive influence on her driving behaviour. Here we present the proof of concept of the system and describe the techniques and technologies that are part of it. Further possible future improvements on each of the building blocks are also presented.
Robust and accurate, map-based localization is crucial for autonomous mobile systems. In this paper, we exploit range images generated from 3D LiDAR scans to address the problem of localizing mobile robots or autonomous cars in a map of a large-scale outdoor environment represented by a triangular mesh. We use the Poisson surface reconstruction to generate the mesh-based map representation. Based on the range images generated from the current LiDAR scan and the synthetic rendered views from the mesh-based map, we propose a new observation model and integrate it into a Monte Carlo localization framework, which achieves better localization performance and generalizes well to different environments. We test the proposed localization approach on multiple datasets collected in different environments with different LiDAR scanners. The experimental results show that our method can reliably and accurately localize a mobile system in different environments and operate online at the LiDAR sensor frame rate to track the vehicle pose.
Trust is a multilayered concept with critical relevance when it comes to introducing new technologies. Understanding how humans will interact with complex vehicle systems and preparing for the functional, societal and psychological aspects of autonom ous vehicles entry into our cities is a pressing concern. Design tools can help calibrate the adequate and affordable level of trust needed for a safe and positive experience. This study focuses on passenger interactions capable of enhancing the system trustworthiness and data accuracy in future shared public transportation.
97 - Kuang Huang , Xu Chen , Xuan Di 2020
This paper aims to answer the research question as to optimal design of decision-making processes for autonomous vehicles (AVs), including dynamical selection of driving velocity and route choices on a transportation network. Dynamic traffic assignme nt (DTA) has been widely used to model travelerss route choice or/and departure-time choice and predict dynamic traffic flow evolution in the short term. However, the existing DTA models do not explicitly describe ones selection of driving velocity on a road link. Driving velocity choice may not be crucial for modeling the movement of human drivers but it is a must-have control to maneuver AVs. In this paper, we aim to develop a game-theoretic model to solve for AVss optimal driving strategies of velocity control in the interior of a road link and route choice at a junction node. To this end, we will first reinterpret the DTA problem as an N-car differential game and show that this game can be tackled with a general mean field game-theoretic framework. The developed mean field game is challenging to solve because of the forward and backward structure for velocity control and the complementarity conditions for route choice. An efficient algorithm is developed to address these challenges. The model and the algorithm are illustrated on the Braess network and the OW network with a single destination. On the Braess network, we first compare the LWR based DTA model with the proposed game and find that the driving and routing control navigates AVs with overall lower costs. We then compare the total travel cost without and with the middle link and find that the Braess paradox may still arise under certain conditions. We also test our proposed model and solution algorithm on the OW network.
Recently, Autonomous Vehicles (AVs) have gained extensive attention from both academia and industry. AVs are a complex system composed of many subsystems, making them a typical target for attackers. Therefore, the firmware of the different subsystems needs to be updated to the latest version by the manufacturer to fix bugs and introduce new features, e.g., using security patches. In this paper, we propose a distributed firmware update scheme for the AVs subsystems, leveraging blockchain and smart contract technology. A consortium blockchain made of different AVs manufacturers is used to ensure the authenticity and integrity of firmware updates. Instead of depending on centralized third parties to distribute the new updates, we enable AVs, namely distributors, to participate in the distribution process and we take advantage of their mobility to guarantee high availability and fast delivery of the updates. To incentivize AVs to distribute the updates, a reward system is established that maintains a credit reputation for each distributor account in the blockchain. A zero-knowledge proof protocol is used to exchange the update in return for a proof of distribution in a trust-less environment. Moreover, we use attribute-based encryption (ABE) scheme to ensure that only authorized AVs will be able to download and use a new update. Our analysis indicates that the additional cryptography primitives and exchanged transactions do not affect the operation of the AVs network. Also, our security analysis demonstrates that our scheme is efficient and secure against different attacks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا