ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph Signal Processing for Geometric Data and Beyond: Theory and Applications

55   0   0.0 ( 0 )
 نشر من قبل Jiahao Pang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Geometric data acquired from real-world scenes, e.g., 2D depth images, 3D point clouds, and 4D dynamic point clouds, have found a wide range of applications including immersive telepresence, autonomous driving, surveillance, etc. Due to irregular sampling patterns of most geometric data, traditional image/video processing methodologies are limited, while Graph Signal Processing (GSP) -- a fast-developing field in the signal processing community -- enables processing signals that reside on irregular domains and plays a critical role in numerous applications of geometric data from low-level processing to high-level analysis. To further advance the research in this field, we provide the first timely and comprehensive overview of GSP methodologies for geometric data in a unified manner by bridging the connections between geometric data and graphs, among the various geometric data modalities, and with spectral/nodal graph filtering techniques. We also discuss the recently developed Graph Neural Networks (GNNs) and interpret the operation of these networks from the perspective of GSP. We conclude with a brief discussion of open problems and challenges.



قيم البحث

اقرأ أيضاً

This paper deals with the unification of local and non-local signal processing on graphs within a single convolutional neural network (CNN) framework. Building upon recent works on graph CNNs, we propose to use convolutional layers that take as input s two variables, a signal and a graph, allowing the network to adapt to changes in the graph structure. In this article, we explain how this framework allows us to design a novel method to perform style transfer.
90 - Songyang Zhang , Qinwen Deng , 2021
This work introduces a tensor-based framework of graph signal processing over multilayer networks (M-GSP) to analyze high-dimensional signal interactions. Following Part Is introduction of fundamental definitions and spectrum properties of M-GSP, thi s second Part focuses on more detailed discussions of implementation and applications of M-GSP. Specifically, we define the concepts of stationary process, convolution, bandlimited signals, and sampling theory over multilayer networks. We also develop fundamentals of filter design and derive approximated methods of spectrum estimation within the proposed framework. For practical applications, we further present several MLN-based methods for signal processing and data analysis. Our experimental results demonstrate significant performance improvement using our M-GSP framework over traditional signal processing solutions.
Graph signal processing (GSP) is an emerging field developed for analyzing signals defined on irregular spatial structures modeled as graphs. Given the considerable literature regarding the resilience of infrastructure networks using graph theory, it is not surprising that a number of applications of GSP can be found in the resilience domain. GSP techniques assume that the choice of graphical Fourier transform (GFT) imparts a particular spectral structure on the signal of interest. We assess a number of power distribution systems with respect to metrics of signal structure and identify several correlates to system properties and further demonstrate how these metrics relate to performance of some GSP techniques. We also discuss the feasibility of a data-driven approach that improves these metrics and apply it to a water distribution scenario. Overall, we find that many of the candidate systems analyzed are properly structured in the chosen GFT basis and amenable to GSP techniques, but identify considerable variability and nuance that merits future investigation.
Deep learning, particularly convolutional neural networks (CNNs), have yielded rapid, significant improvements in computer vision and related domains. But conventional deep learning architectures perform poorly when data have an underlying graph stru cture, as in social, biological, and many other domains. This paper explores 1)how graph signal processing (GSP) can be used to extend CNN components to graphs in order to improve model performance; and 2)how to design the graph CNN architecture based on the topology or structure of the data graph.
The goal of this paper is to propose novel strategies for adaptive learning of signals defined over graphs, which are observed over a (randomly time-varying) subset of vertices. We recast two classical adaptive algorithms in the graph signal processi ng framework, namely, the least mean squares (LMS) and the recursive least squares (RLS) adaptive estimation strategies. For both methods, a detailed mean-square analysis illustrates the effect of random sampling on the adaptive reconstruction capability and the steady-state performance. Then, several probabilistic sampling strategies are proposed to design the sampling probability at each node in the graph, with the aim of optimizing the tradeoff between steady-state performance, graph sampling rate, and convergence rate of the adaptive algorithms. Finally, a distributed RLS strategy is derived and is shown to be convergent to its centralized counterpart. Numerical simulations carried out over both synthetic and real data illustrate the good performance of the proposed sampling and reconstruction strategies for (possibly distributed) adaptive learning of signals defined over graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا