ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalization Guarantees for Imitation Learning

138   0   0.0 ( 0 )
 نشر من قبل Allen Z. Ren
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Control policies from imitation learning can often fail to generalize to novel environments due to imperfect demonstrations or the inability of imitation learning algorithms to accurately infer the experts policies. In this paper, we present rigorous generalization guarantees for imitation learning by leveraging the Probably Approximately Correct (PAC)-Bayes framework to provide upper bounds on the expected cost of policies in novel environments. We propose a two-stage training method where a latent policy distribution is first embedded with multi-modal expert behavior using a conditional variational autoencoder, and then fine-tuned in new training environments to explicitly optimize the generalization bound. We demonstrate strong generalization bounds and their tightness relative to empirical performance in simulation for (i) grasping diverse mugs, (ii) planar pushing with visual feedback, and (iii) vision-based indoor navigation, as well as through hardware experiments for the two manipulation tasks.



قيم البحث

اقرأ أيضاً

70 - HaoChih Lin , Baopu Li , Xin Zhou 2021
Interactions with either environments or expert policies during training are needed for most of the current imitation learning (IL) algorithms. For IL problems with no interactions, a typical approach is Behavior Cloning (BC). However, BC-like method s tend to be affected by distribution shift. To mitigate this problem, we come up with a Robust Model-Based Imitation Learning (RMBIL) framework that casts imitation learning as an end-to-end differentiable nonlinear closed-loop tracking problem. RMBIL applies Neural ODE to learn a precise multi-step dynamics and a robust tracking controller via Nonlinear Dynamics Inversion (NDI) algorithm. Then, the learned NDI controller will be combined with a trajectory generator, a conditional VAE, to imitate an experts behavior. Theoretical derivation shows that the controller network can approximate an NDI when minimizing the training loss of Neural ODE. Experiments on Mujoco tasks also demonstrate that RMBIL is competitive to the state-of-the-art generative adversarial method (GAIL) and achieves at least 30% performance gain over BC in uneven surfaces.
The traditional notion of generalization---i.e., learning a hypothesis whose empirical error is close to its true error---is surprisingly brittle. As has recently been noted in [DFH+15b], even if several algorithms have this guarantee in isolation, t he guarantee need not hold if the algorithms are composed adaptively. In this paper, we study three notions of generalization---increasing in strength---that are robust to postprocessing and amenable to adaptive composition, and examine the relationships between them. We call the weakest such notion Robust Generalization. A second, intermediate, notion is the stability guarantee known as differential privacy. The strongest guarantee we consider we call Perfect Generalization. We prove that every hypothesis class that is PAC learnable is also PAC learnable in a robustly generalizing fashion, with almost the same sample complexity. It was previously known that differentially private algorithms satisfy robust generalization. In this paper, we show that robust generalization is a strictly weaker concept, and that there is a learning task that can be carried out subject to robust generalization guarantees, yet cannot be carried out subject to differential privacy. We also show that perfect generalization is a strictly stronger guarantee than differential privacy, but that, nevertheless, many learning tasks can be carried out subject to the guarantees of perfect generalization.
Dexterous manipulation has been a long-standing challenge in robotics. Recently, modern model-free RL has demonstrated impressive results on a number of problems. However, complex domains like dexterous manipulation remain a challenge for RL due to t he poor sample complexity. To address this, current approaches employ expert demonstrations in the form of state-action pairs, which are difficult to obtain for real-world settings such as learning from videos. In this work, we move toward a more realistic setting and explore state-only imitation learning. To tackle this setting, we train an inverse dynamics model and use it to predict actions for state-only demonstrations. The inverse dynamics model and the policy are trained jointly. Our method performs on par with state-action approaches and considerably outperforms RL alone. By not relying on expert actions, we are able to learn from demonstrations with different dynamics, morphologies, and objects.
This paper introduces for the first time a framework to obtain provable worst-case guarantees for neural network performance, using learning for optimal power flow (OPF) problems as a guiding example. Neural networks have the potential to substantial ly reduce the computing time of OPF solutions. However, the lack of guarantees for their worst-case performance remains a major barrier for their adoption in practice. This work aims to remove this barrier. We formulate mixed-integer linear programs to obtain worst-case guarantees for neural network predictions related to (i) maximum constraint violations, (ii) maximum distances between predicted and optimal decision variables, and (iii) maximum sub-optimality. We demonstrate our methods on a range of PGLib-OPF networks up to 300 buses. We show that the worst-case guarantees can be up to one order of magnitude larger than the empirical lower bounds calculated with conventional methods. More importantly, we show that the worst-case predictions appear at the boundaries of the training input domain, and we demonstrate how we can systematically reduce the worst-case guarantees by training on a larger input domain than the domain they are evaluated on.
79 - He Yin , Peter Seiler , Ming Jin 2020
A method is presented to learn neural network (NN) controllers with stability and safety guarantees through imitation learning (IL). Convex stability and safety conditions are derived for linear time-invariant plant dynamics with NN controllers by me rging Lyapunov theory with local quadratic constraints to bound the nonlinear activation functions in the NN. These conditions are incorporated in the IL process, which minimizes the IL loss, and maximizes the volume of the region of attraction associated with the NN controller simultaneously. An alternating direction method of multipliers based algorithm is proposed to solve the IL problem. The method is illustrated on an inverted pendulum system, aircraft longitudinal dynamics, and vehicle lateral dynamics.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا