ﻻ يوجد ملخص باللغة العربية
The Learning with Errors (LWE) problem is the fundamental backbone of modern lattice based cryptography, allowing one to establish cryptography on the hardness of well-studied computational problems. However, schemes based on LWE are often impractical, so Ring LWE was introduced as a form of `structured LWE, trading off a hard to quantify loss of security for an increase in efficiency by working over a well chosen ring. Another popular variant, Module LWE, generalizes this exchange by implementing a module structure over a ring. In this work, we introduce a novel variant of LWE over cyclic algebras (CLWE) to replicate the addition of the ring structure taking LWE to Ring LWE by adding cyclic structure to Module LWE. The proposed construction is both more efficient than Module LWE and conjecturally more secure than Ring LWE, the best of both worlds. We show that the security reductions expected for an LWE problem hold, namely a reduction from certain structured lattice problems to the hardness of the decision variant of the CLWE problem. As a contribution of theoretic interest, we view CLWE as the first variant of Ring LWE which supports non-commutative multiplication operations. This ring structure compares favorably with Module LWE, and naturally allows a larger message space for error correction coding.
A long standing problem in the area of error correcting codes asks whether there exist good cyclic codes. Most of the known results point in the direction of a negative answer. The uncertainty principle is a classical result of harmonic analysis as
Let $mathbb{F}_q$ be a finite field of order $q$, a prime power integer such that $q=et+1$ where $tgeq 1,egeq 2$ are integers. In this paper, we study cyclic codes of length $n$ over a non-chain ring $R_{e,q}=mathbb{F}_q[u]/langle u^e-1rangle$. We de
As the size of data storing arrays of disks grows, it becomes vital to protect data against double disk failures. A popular method of protection is via the Reed-Solomon (RS) code with two parity words. In the present paper we construct alternative ex
In this paper, we clarify some aspects on LCD codes in the literature. We first prove that a non-free LCD code does not exist over finite commutative Frobenius local rings. We then obtain a necessary and sufficient condition for the existence of LCD
Cyclic codes, as linear block error-correcting codes in coding theory, play a vital role and have wide applications. Ding in cite{D} constructed a number of classes of cyclic codes from almost perfect nonlinear (APN) functions and planar functions ov