ﻻ يوجد ملخص باللغة العربية
M105 (NGC 3379) is an early-type galaxy in the Leo I group. This group is the nearest group that contains all main galaxy types and can thus be used as a benchmark to study the properties of the intra-group light (IGL) in low-mass groups. We use PNe as discrete stellar tracers of the diffuse light around M105. PNe were identified on the basis of their bright [OIII]5007 AA emission and the absence of a broad-band continuum. We compare the PN number density profile with the galaxy surface-brightness profile decomposed into metallicity components using published HST photometry in two halo fields. We identify 226 PNe candidates within a limiting magnitude of mlim = 28.1 from our Subaru-SuprimeCam imaging, covering 67.6 kpc along the major axis of M105 and the halos of NGC 3384 and NGC 3398. We find an excess of PNe at large radii compared to the stellar surface brightness profile from broad-band surveys. This excess is related to a variation in the luminosity-specific PN number $alpha$ with radius. The $alpha$-parameter value of the extended halo is more than 7 times higher than that of the inner halo. We also measure an increase in the slope of the PN luminosity function at fainter magnitudes with radius. We infer that the radial variation of the PN population properties is due to a diffuse population of metal-poor stars ([M/H] < -1.0) following an exponential profile, in addition to the M105 halo. The spatial coincidence between the number density profile of these metal-poor stars and the increase in the $alpha$-parameter value with radius establishes the missing link between metallicity and the post-AGB phases of stellar evolution. We estimate that the total bolometric luminosity associated with the exponential IGL population is 2.04x10^9 Lsun as a lower limit, corresponding to an IGL fraction of 3.8%. This work sets the stage for kinematic studies of the IGL in low-mass groups.
The galaxy M49 (NGC 4472) is the brightest early-type galaxy in the Virgo Cluster. It is located in Subcluster B and has an unusually blue, metal-poor outer halo. Planetary nebulae (PNe) are excellent tracers of diffuse galaxy and intragroup light. W
We present wide-field spectroscopy of globular clusters around the Leo I group galaxies NGC 3379 and NGC 3384 using the FLAMES multi-fibre instrument at the VLT. We obtain accurate radial velocities for 42 globular clusters (GCs) in total, 30 for GCs
Near-infrared imaging in the 1 - 0 S(1) emission line of molecular hydrogen is able to detect planetary nebulae (PNe) that are hidden from optical emission line surveys. We present images of 307 objects from the UWISH2 survey of the northern Galactic
The Andromeda (M31) galaxy subtends nearly 100 sq. deg. on the sky, with severe contamination from the Milky Way halo stars whose surface density displays a steep gradient across the entire M31 field-of-view. Planetary Nebulae (PNe) are a population
We report the first detections of OH$^+$ emission in planetary nebulae (PNe). As part of an imaging and spectroscopy survey of 11 PNe in the far-IR using the PACS and SPIRE instruments aboard the Herschel Space Observatory, we performed a line survey