ترغب بنشر مسار تعليمي؟ اضغط هنا

Solvent-dependent termination, size and stability in polyynes synthesis by laser ablation in liquids

88   0   0.0 ( 0 )
 نشر من قبل Sonia Peggiani Ms
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years there has been a growing interest in sp-carbon chains as possible novel nanostructures. An example of sp-carbon chains are the so-called polyynes, characterized by the alternation of single and triple bonds that can be synthesized by pulsed laser ablation in liquid (PLAL) of a graphite target. In this work, by exploiting different solvents in the PLAL process, e.g. water, acetonitrile, methanol, ethanol, and isopropanol, we systematically investigate the solvent role in polyyne formation and stability. The presence of methyland cyano-groups in the solutions influences the termination of polyynes, allowing to detect, in addition to hydrogen-capped polyynes up to HC22H, methyl-capped polyynes up to 18 carbon atoms (i.e. HCnCH3) and cyanopolyynes up to HC12CN. The assignment of each species was done by UV-Vis spectroscopy and supported by density functional theory simulations of vibronic spectra. In addition, surface-enhanced Raman spectroscopy allowed to observe differences, due to different terminations (hydrogen, methyl-and cyano group), in the shape and positions of the characteristic Raman bands of the size-selected polyynes. The evolution in time of each polyyne has been investigated evaluating the chromatographic peak area, and the effect of size, terminations and solvents on polyynes stability has been individuated.



قيم البحث

اقرأ أيضاً

Polyynes are linear sp-carbon chains of finite length consisting in a sequence of alternated single and triple bonds and displaying appealing optical and electronic properties. A simple, low cost and scalable production technique for polyynes is the submerged arc discharge (SAD) in liquid, which so far, has been mainly exploited in organic solvents. In this work, we investigated in detail SAD in water as a cheap and non-toxic solvent for the production of polyynes. The role of process parameters such as current (10-25 A) and voltage (20-25 V) in the production yield have been investigated, as well as polyynes stability. Polyynes terminated by hydrogen (CnH2: n=6-16) were identified by High-Performance Liquid Chromatography (HPLC) coupled with UV-Visible absorption spectroscopy and with the support of density functional theory (DFT) calculations. Size-selected polyynes separated by HPLC were analyzed by surface enhanced Raman spectroscopy (SERS). The formation process was monitored by in situ SERS using an immersed fiber-optic Raman probe and employing Ag nanoparticles directly produced in the solution by SAD.
Polyynes are finite chains formed by sp-hybridized carbon atoms with alternating single and triple bonds and displaying intriguing electronic and optical properties. Pulsed laser ablation in liquid (PLAL) is a well assessed technique for the physical synthesis of hydrogen-capped polyynes in solution, however, their limited stability prevents further exploitation in materials for different applications. In this work, polyynes in poly(vinyl alcohol) (PVA) were produced in a single-step PLAL process by ablating graphite directly in aqueous solution of PVA, investigating the role of polymer concentration. The presence of PVA solution, as a participating medium for PLAL, is shown to favour the formation of polyynes. The addition of Ag colloids to the aqueous PVA/polyynes solution allowed surface-enhanced Raman spectroscopy (SERS) measurements, carried out both on liquid samples and on free-standing nanocomposites, obtained after solvent evaporation. We show that polyynes in the nanocomposite remain stable at least for 11 months, whereas the corresponding PVA/Ag/polyynes solution displayed a strong polyyne reduction already after 3 weeks. These results open the view to further characterizations of the properties of polyyne-based films and materials.
Fluorescent defects in non-cytotoxic diamond nanoparticles are candidates for qubits in quantum computing, optical labels in biomedical imaging and sensors in magnetometry. For each application these defects need to be optically and thermodynamically stable, and included in individual particles at suitable concentrations (singly or in large numbers). In this letter, we combine simulations, theory and experiment to provide the first comprehensive and generic prediction of the size, temperature and nitrogen-concentration dependent stability of optically active NV defects in nanodiamonds.
Most multiferroic materials with coexisting ferroelectric and magnetic order exhibit cycloidal antiferromagnetism with wavelength of several nanometers. The prototypical example is bismuth ferrite (BiFeO$_3$ or BFO), a room-temperature multiferroic c onsidered for a number of technological applications. While most applications require small sizes such as nanoparticles, little is known about the state of these materials when their sizes are comparable to the cycloid wavelength. This work describes a microscopic theory of cycloidal magnetism in nanoparticles based on Hamiltonian calculations. It is demonstrated that magnetic anisotropy close to the surface has a huge impact on the multiferroic ground state. For certain nanoparticle sizes the modulus of the ferromagnetic and ferroelectric moments are bistable, an effect that may be used in the design of ideal memory bits that can be switched electrically and read out magnetically.
This study focuses on the synthesis of FeRh nanoparticles via pulsed laser ablation in liquid and on controlling the oxidation of the synthesized nanoparticles. Formation of monomodal {gamma}-FeRh nanoparticles was confirmed by transmission electron microscopy (TEM) and their composition confirmed by atom probe tomography (APT). On these particles, three major contributors to oxidation were analysed: 1) dissolved oxygen in the organic solvents, 2) the bound oxygen in the solvent and 3) oxygen in the atmosphere above the solvent. The decrease of oxidation for optimized ablation conditions was confirmed through energy-dispersive X-ray (EDX) and Mossbauer spectroscopy. Furthermore, the time dependence of oxidation was monitored for dried FeRh nanoparticles powders using ferromagnetic resonance spectroscopy (FMR). By magnetophoretic separation, B2-FeRh nanoparticles could be extracted from the solution and characteristic differences of nanostrand formation between {gamma}-FeRh and B2-FeRh nanoparticles were observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا