ترغب بنشر مسار تعليمي؟ اضغط هنا

Size-dependent bistability in multiferroic nanoparticles

81   0   0.0 ( 0 )
 نشر من قبل Marc Allen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Most multiferroic materials with coexisting ferroelectric and magnetic order exhibit cycloidal antiferromagnetism with wavelength of several nanometers. The prototypical example is bismuth ferrite (BiFeO$_3$ or BFO), a room-temperature multiferroic considered for a number of technological applications. While most applications require small sizes such as nanoparticles, little is known about the state of these materials when their sizes are comparable to the cycloid wavelength. This work describes a microscopic theory of cycloidal magnetism in nanoparticles based on Hamiltonian calculations. It is demonstrated that magnetic anisotropy close to the surface has a huge impact on the multiferroic ground state. For certain nanoparticle sizes the modulus of the ferromagnetic and ferroelectric moments are bistable, an effect that may be used in the design of ideal memory bits that can be switched electrically and read out magnetically.


قيم البحث

اقرأ أيضاً

Nd2Fe14B magnetic nanoparticles have been successfully produced using a surfactant-assisted ball milling technique. The nanoparticles with different size about 6, 20 and 300 nm were obtained by a size-selection process. Spin-reorientation transition temperature of the NdFeB nanoparticles was then determined by measuring the temperature dependence of DC and AC magnetic susceptibility. It was found that the spin-reorientation transition temperature (Tsr) of the nanoparticles is strongly size dependent, i.e., Tsr of the 300 nm particles is lower than that of raw materials and a significant decrease was observed in the 20 nm particles.
Understanding the structural phase diagram of nano scale SrTiO3 has important implications on the basic physics and applications of the general class of transition metal oxide perovskites. Pressure dependent structural measurements on monodispersed n anoscale SrTiO3 samples with average diameters of 10 to ~80 nm were conducted. A robust pressure independent polar structure was detected in the 10 nm sample for pressures of up to 13 GPa while a size dependent cubic to tetragonal transition occurs (at P = Pc) for larger particle sizes. The results suggest that the growth of ~10 nm STO particles on substrates with large lattice mismatch will not alter the polar state of the system for a large range of strain values, possibly enabling device use.
When decreasing the size of nanoscale magnetic particles their magnetization becomes vulnerable to thermal fluctuations as approaching the superparamgnetic limit, hindering thus applications relying on a stable magnetization. Here, we show theoretica lly that a magnetoelectric coupling to a ferroelectric substrate renders possible the realization of substantially smaller nano clusters with thermally stable magnetization. For an estimate of cluster size we perform calculations with realistic material parameters for iron nano particles on ferroelectric BaTiO3 substrate. We find, steering the polarization of BaTiO3 with electric fields affects the magnetism of the deposited magnetic clusters. These findings point to a qualitatively new class of superparamagnetic composites.
The finite size and surface roughness effects on the magnetization of NiO nanoparticles is investigated. A large magnetic moment arises for an antiferromagnetic nanoparticle due to these effects. The magnetic moment without the surface roughness has a non-monotonic and oscillatory dependence on $R$, the size of the particles, with the amplitude of the fluctuations varying linearly with $R$. The geometry of the particle also matters a lot in the calculation of the net magnetic moment. An oblate spheroid shape particle shows an increase in net magnetic moment by increasing oblateness of the particle. However, the magnetic moment values thus calculated are very small compared to the experimental values for various sizes, indicating that the bulk antiferromagnetic structure may not hold near the surface. We incorporate the surface roughness in two different ways; an ordered surface with surface spins inside a surface roughness shell aligned due to an internal field, and a disordered surface with randomly oriented spins inside surface roughness shell. Taking a variational approach we find that the core interaction strength is modified for nontrivial values of $Delta$ which is a signature of multi-sublattice ordering for nanoparticles. The surface roughness scale $Delta $ is also showing size dependent fluctuations, with an envelope decay $Deltasim R^{-1/5}$. The net magnetic moment values calculated using spheroidal shape and ordered surface are close to the experimental values for different sizes.
In recent years there has been a growing interest in sp-carbon chains as possible novel nanostructures. An example of sp-carbon chains are the so-called polyynes, characterized by the alternation of single and triple bonds that can be synthesized by pulsed laser ablation in liquid (PLAL) of a graphite target. In this work, by exploiting different solvents in the PLAL process, e.g. water, acetonitrile, methanol, ethanol, and isopropanol, we systematically investigate the solvent role in polyyne formation and stability. The presence of methyland cyano-groups in the solutions influences the termination of polyynes, allowing to detect, in addition to hydrogen-capped polyynes up to HC22H, methyl-capped polyynes up to 18 carbon atoms (i.e. HCnCH3) and cyanopolyynes up to HC12CN. The assignment of each species was done by UV-Vis spectroscopy and supported by density functional theory simulations of vibronic spectra. In addition, surface-enhanced Raman spectroscopy allowed to observe differences, due to different terminations (hydrogen, methyl-and cyano group), in the shape and positions of the characteristic Raman bands of the size-selected polyynes. The evolution in time of each polyyne has been investigated evaluating the chromatographic peak area, and the effect of size, terminations and solvents on polyynes stability has been individuated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا