ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid Collaborative Filtering Models for Clinical Search Recommendation

106   0   0.0 ( 0 )
 نشر من قبل Bo Peng
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With increasing and extensive use of electronic health records, clinicians are often under time pressure when they need to retrieve important information efficiently among large amounts of patients health records in clinics. While a search function can be a useful alternative to browsing through a patients record, it is cumbersome for clinicians to search repeatedly for the same or similar information on similar patients. Under such circumstances, there is a critical need to build effective recommender systems that can generate accurate search term recommendations for clinicians. In this manuscript, we developed a hybrid collaborative filtering model using patients encounter and search term information to recommend the next search terms for clinicians to retrieve important information fast in clinics. For each patient, the model will recommend terms that either have high co-occurrence frequencies with his/her most recent ICD codes or are highly relevant to the most recent search terms on this patient. We have conducted comprehensive experiments to evaluate the proposed model, and the experimental results demonstrate that our model can outperform all the state-of-the-art baseline methods for top-N search term recommendation on different datasets.



قيم البحث

اقرأ أيضاً

The item cold-start problem seriously limits the recommendation performance of Collaborative Filtering (CF) methods when new items have either none or very little interactions. To solve this issue, many modern Internet applications propose to predict a new items interaction from the possessing contents. However, it is difficult to design and learn a map between the items interaction history and the corresponding contents. In this paper, we apply the Wasserstein distance to address the item cold-start problem. Given item content information, we can calculate the similarity between the interacted items and cold-start ones, so that a users preference on cold-start items can be inferred by minimizing the Wasserstein distance between the distributions over these two types of items. We further adopt the idea of CF and propose Wasserstein CF (WCF) to improve the recommendation performance on cold-start items. Experimental results demonstrate the superiority of WCF over state-of-the-art approaches.
264 - Le Wu , Xiangnan He , Xiang Wang 2021
Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant pro gress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.
Collaborative Filtering aims at exploiting the feedback of users to provide personalised recommendations. Such algorithms look for latent variables in a large sparse matrix of ratings. They can be enhanced by adding side information to tackle the wel l-known cold start problem. While Neu-ral Networks have tremendous success in image and speech recognition, they have received less attention in Collaborative Filtering. This is all the more surprising that Neural Networks are able to discover latent variables in large and heterogeneous datasets. In this paper, we introduce a Collaborative Filtering Neural network architecture aka CFN which computes a non-linear Matrix Factorization from sparse rating inputs and side information. We show experimentally on the MovieLens and Douban dataset that CFN outper-forms the state of the art and benefits from side information. We provide an implementation of the algorithm as a reusable plugin for Torch, a popular Neural Network framework.
Collaborative Filtering (CF) is one of the most used methods for Recommender System. Because of the Bayesian nature and nonlinearity, deep generative models, e.g. Variational Autoencoder (VAE), have been applied into CF task, and have achieved great performance. However, most VAE-based methods suffer from matrix sparsity and consider the prior of users latent factors to be the same, which leads to poor latent representations of users and items. Additionally, most existing methods model latent factors of users only and but not items, which makes them not be able to recommend items to a new user. To tackle these problems, we propose a Neural Variational Hybrid Collaborative Filtering, NVHCF. Specifically, we consider both the generative processes of users and items, and the prior of latent factors of users and items to be side informationspecific, which enables our model to alleviate matrix sparsity and learn better latent representations of users and items. For inference purpose, we derived a Stochastic Gradient Variational Bayes (SGVB) algorithm to analytically approximate the intractable distributions of latent factors of users and items. Experiments conducted on two large datasets have showed our methods significantly outperform the state-of-the-art CF methods, including the VAE-based methods.
120 - Xiao Luo , Daqing Wu , Chong Chen 2021
With the increasing scale and diversification of interaction behaviors in E-commerce, more and more researchers pay attention to multi-behavior recommender systems that utilize interaction data of other auxiliary behaviors such as view and cart. To a ddress these challenges in heterogeneous scenarios, non-sampling methods have shown superiority over negative sampling methods. However, two observations are usually ignored in existing state-of-the-art non-sampling methods based on binary regression: (1) users have different preference strengths for different items, so they cannot be measured simply by binary implicit data; (2) the dependency across multiple behaviors varies for different users and items. To tackle the above issue, we propose a novel non-sampling learning framework named underline{C}riterion-guided underline{H}eterogeneous underline{C}ollaborative underline{F}iltering (CHCF). CHCF introduces both upper and lower bounds to indicate selection criteria, which will guide user preference learning. Besides, CHCF integrates criterion learning and user preference learning into a unified framework, which can be trained jointly for the interaction prediction on target behavior. We further theoretically demonstrate that the optimization of Collaborative Metric Learning can be approximately achieved by CHCF learning framework in a non-sampling form effectively. Extensive experiments on two real-world datasets show that CHCF outperforms the state-of-the-art methods in heterogeneous scenarios.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا