ﻻ يوجد ملخص باللغة العربية
Social-distancing to combat the COVID-19 pandemic has led to widespread reductions in air pollutant emissions. Quantifying these changes requires a business as usual counterfactual that accounts for the synoptic and seasonal variability of air pollutants. We use a machine learning algorithm driven by information from the NASA GEOS-CF model to assess changes in nitrogen dioxide (NO$_{2}$) and ozone (O$_{3}$) at 5,756 observation sites in 46 countries from January through June 2020. Reductions in NO$_{2}$ correlate with timing and intensity of COVID-19 restrictions, ranging from 60% in severely affected cities (e.g., Wuhan, Milan) to little change (e.g., Rio de Janeiro, Taipei). On average, NO$_{2}$ concentrations were 18% lower than business as usual from February 2020 onward. China experienced the earliest and steepest decline, but concentrations since April have mostly recovered and remained within 5% to the business as usual estimate. NO$_{2}$ reductions in Europe and the US have been more gradual with a halting recovery starting in late March. We estimate that the global NO$_{x}$ (NO+NO$_{2}$) emission reduction during the first 6 months of 2020 amounted to 2.9 TgN, equivalent to 5.1% of the annual anthropogenic total. The response of surface O$_{3}$ is complicated by competing influences of non-linear atmospheric chemistry. While surface O$_{3}$ increased by up to 50% in some locations, we find the overall net impact on daily average O$_{3}$ between February - June 2020 to be small. However, our analysis indicates a flattening of the O$_{3}$ diurnal cycle with an increase in night time ozone due to reduced titration and a decrease in daytime ozone, reflecting a reduction in photochemical production. The O$_{3}$ response is dependent on season, time scale, and environment, with declines in surface O$_{3}$ forecasted if NO$_{x}$ emission reductions continue.
Ozone (O$_{3}$) is a key oxidant and pollutant in the lower atmosphere. Significant increases in surface O$_{3}$ have been reported in many cities during the COVID-19 lockdown. Here we conduct comprehensive observation and modeling analyses of surfac
Ambient concentrations of many pollutants are associated with emissions due to human activity, such as road transport and other combustion sources. In this paper we consider air pollution as a multi--level phenomenon within a Bayesian hierarchical mo
The global COVID-19 pandemic has led to the online proliferation of health-, political-, and conspiratorial-based misinformation. Understanding the reach and belief in this misinformation is vital to managing this crisis, as well as future crises. Th
The COVID-19 pandemic has caused a dramatic surge in demand for personal protective equipment (PPE) worldwide. Many countries have imposed export restrictions on PPE to ensure the sufficient domestic supply. The surging demand and export restrictions
Global lockdowns in response to the COVID-19 pandemic have led to changes in the anthropogenic activities resulting in perceivable air quality improvements. Although several recent studies have analyzed these changes over different regions of the glo