ﻻ يوجد ملخص باللغة العربية
This paper explores the generalization loss of linear regression in variably parameterized families of models, both under-parameterized and over-parameterized. We show that the generalization curve can have an arbitrary number of peaks, and moreover, locations of those peaks can be explicitly controlled. Our results highlight the fact that both classical U-shaped generalization curve and the recently observed double descent curve are not intrinsic properties of the model family. Instead, their emergence is due to the interaction between the properties of the data and the inductive biases of learning algorithms.
We introduce Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image representation learning. BYOL relies on two neural networks, referred to as online and target networks, that interact and learn from each other. From an augmented
Can a user create a deep generative model by sketching a single example? Traditionally, creating a GAN model has required the collection of a large-scale dataset of exemplars and specialized knowledge in deep learning. In contrast, sketching is possi
Geometric feature extraction is a crucial component of point cloud registration pipelines. Recent work has demonstrated how supervised learning can be leveraged to learn better and more compact 3D features. However, those approaches reliance on groun
State-of-the-art methods for self-supervised learning (SSL) build representations by maximizing the similarity between different augmented views of a sample. Because these approaches try to match views of the same sample, they can be too myopic and f
The developments of Rademacher complexity and PAC-Bayesian theory have been largely independent. One exception is the PAC-Bayes theorem of Kakade, Sridharan, and Tewari (2008), which is established via Rademacher complexity theory by viewing Gibbs cl