ترغب بنشر مسار تعليمي؟ اضغط هنا

Lissajous 3-braids

71   0   0.0 ( 0 )
 نشر من قبل Hiroaki Nakamura
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We classify 3-braids arising from collision-free choreographic motions of 3 bodies on Lissajous plane curves, and present a parametrization in terms of levels and (Christoffel) slopes. Each of these Lissajous 3-braids represents a pseudo-Anosov mapping class whose dilatation increases when the level ascends in the natural numbers or when the slope descends in the Stern-Brocot tree. We also discuss 4-symbol frieze patterns that encode cutting sequences of geodesics along the Farey tessellation in relation to odd continued fractions of quadratic surds for the Lissajous 3-braids.



قيم البحث

اقرأ أيضاً

We construct topological triangulations for complements of $(-2,3,n)$-pretzel knots and links with $nge7$. Following a procedure outlined by Futer and Gueritaud, we use a theorem of Casson and Rivin to prove the constructed triangulations are geometr ic. Futer, Kalfagianni, and Purcell have shown (indirectly) that such braids are hyperbolic. The new result here is a direct proof.
102 - Adam Boocher 2007
A Lissajous knot is one that can be parameterized by a single cosine function in each coordinate. Lissajous knots are highly symmetric, and for this reason, not all knots are Lissajous. We prove several theorems which allow us to place bounds on the number of Lissajous knot types with given frequencies and to efficiently sample all possible Lissajous knots with a given set of frequencies. In particular, we systematically tabulate all Lissajous knots with small frequencies and as a result substantially enlarge the tables of known Lissajous knots. A Fourier (i, j, k) knot is similar to a Lissajous knot except that each coordinate is now described by a finite sum of i, j, and k cosine functions respectively. According to Lamm, every knot is a Fourier-(1,1,k) knot for some k. By randomly searching the set of Fourier-(1,1,2) knots we find that all 2-bridge knots up to 14 crossings are either Lissajous or Fourier-(1,1,2) knots. We show that all twist knots are Fourier-(1,1,2) knots and give evidence suggesting that all torus knots are Fourier-(1,1,2) knots. As a result of our computer search, several knots with relatively small crossing numbers are identified as potential counterexamples to interesting conjectures.
133 - Lenhard Ng , Dylan Thurston 2009
We use grid diagrams to present a unified picture of braids, Legendrian knots, and transverse knots.
236 - J. Scott Carter 2013
The notion of a braid is generalized into two and three dimensions. Two-dimensional braids are described by braid monodromies or graphics called charts. In this paper we introduce the notion of curtains, and show that three-dimensional braids are described by braid monodromies or curtains.
77 - Marissa Loving 2018
We study the minimal dilatation of pseudo-Anosov pure surface braids and provide upper and lower bounds as a function of genus and the number of punctures. For a fixed number of punctures, these bounds tend to infinity as the genus does. We also boun d the dilatation of pseudo-Anosov pure surface braids away from zero and give a constant upper bound in the case of a sufficient number of punctures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا