ترغب بنشر مسار تعليمي؟ اضغط هنا

Least dilatation of pure surface braids

78   0   0.0 ( 0 )
 نشر من قبل Marissa Loving
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Marissa Loving




اسأل ChatGPT حول البحث

We study the minimal dilatation of pseudo-Anosov pure surface braids and provide upper and lower bounds as a function of genus and the number of punctures. For a fixed number of punctures, these bounds tend to infinity as the genus does. We also bound the dilatation of pseudo-Anosov pure surface braids away from zero and give a constant upper bound in the case of a sufficient number of punctures.



قيم البحث

اقرأ أيضاً

We classify 3-braids arising from collision-free choreographic motions of 3 bodies on Lissajous plane curves, and present a parametrization in terms of levels and (Christoffel) slopes. Each of these Lissajous 3-braids represents a pseudo-Anosov mappi ng class whose dilatation increases when the level ascends in the natural numbers or when the slope descends in the Stern-Brocot tree. We also discuss 4-symbol frieze patterns that encode cutting sequences of geodesics along the Farey tessellation in relation to odd continued fractions of quadratic surds for the Lissajous 3-braids.
To every Gromov hyperbolic space X one can associate a space at infinity called the Gromov boundary of X. Gromov showed that quasi-isometries of hyperbolic metric spaces induce homeomorphisms on their boundaries, thus giving rise to a well-defined no tion of the boundary of a hyperbolic group. Croke and Kleiner showed that the visual boundary of non-positively curved (CAT(0)) groups is not well-defined, since quasi-isometric CAT(0) spaces can have non-homeomorphic boundaries. For any sublinear function $kappa$, we consider a subset of the visual boundary called the $kappa$-Morse boundary and show that it is QI-invariant and metrizable. This is to say, the $kappa$-Morse boundary of a CAT(0) group is well-defined. In the case of Right-angled Artin groups, it is shown in the Appendix that the Poisson boundary of random walks is naturally identified with the $sqrt{t log t}$--boundary.
114 - C. Abbott , M. Hull 2019
It is known that every infinite index quasi-convex subgroup $H$ of a non-elementary hyperbolic group $G$ is a free factor in a larger quasi-convex subgroup of $G$. We give a probabilistic generalization of this result. That is, we show that when $R$ is a subgroup generated by independent random walks in $G$, then $langle H, Rranglecong Hast R$ with probability going to one as the lengths of the random walks go to infinity and this subgroup is quasi-convex in $G$. Moreover, our results hold for a large class of groups acting on hyperbolic metric spaces and subgroups with quasi-convex orbits. In particular, when $G$ is the mapping class group of a surface and $H$ is a convex cocompact subgroup we show that $langle H, Rrangle$ is convex cocompact and isomorphic to $ Hast R$.
We build an analogue of the Gromov boundary for any proper geodesic metric space, hence for any finitely generated group. More precisely, for any proper geodesic metric space $X$ and any sublinear function $kappa$, we construct a boundary for $X$, de noted $mathcal{partial}_{kappa} X$, that is quasi-isometrically invariant and metrizable. As an application, we show that when $G$ is the mapping class group of a finite type surface, or a relatively hyperbolic group, then with minimal assumptions the Poisson boundary of $G$ can be realized on the $kappa$-Morse boundary of $G$ equipped the word metric associated to any finite generating set.
We classify the connected orientable 2-manifolds whose mapping class groups have a dense conjugacy class. We also show that the mapping class group of a connected orientable 2-manifold has a comeager conjugacy class if and only if the mapping class group is trivial.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا