ﻻ يوجد ملخص باللغة العربية
State-of-the-art spoken language identification (LID) systems, which are based on end-to-end deep neural networks, have shown remarkable success not only in discriminating between distant languages but also between closely-related languages or even different spoken varieties of the same language. However, it is still unclear to what extent neural LID models generalize to speech samples with different acoustic conditions due to domain shift. In this paper, we present a set of experiments to investigate the impact of domain mismatch on the performance of neural LID systems for a subset of six Slavic languages across two domains (read speech and radio broadcast) and examine two low-level signal descriptors (spectral and cepstral features) for this task. Our experiments show that (1) out-of-domain speech samples severely hinder the performance of neural LID models, and (2) while both spectral and cepstral features show comparable performance within-domain, spectral features show more robustness under domain mismatch. Moreover, we apply unsupervised domain adaptation to minimize the discrepancy between the two domains in our study. We achieve relative accuracy improvements that range from 9% to 77% depending on the diversity of acoustic conditions in the source domain.
In this paper, we conduct one of the very first studies for cross-corpora performance evaluation in the spoken language identification (LID) problem. Cross-corpora evaluation was not explored much in LID research, especially for the Indian languages.
Subword modeling for zero-resource languages aims to learn low-level representations of speech audio without using transcriptions or other resources from the target language (such as text corpora or pronunciation dictionaries). A good representation
End-to-end (E2E) spoken language understanding (SLU) systems can infer the semantics of a spoken utterance directly from an audio signal. However, training an E2E system remains a challenge, largely due to the scarcity of paired audio-semantics data.
Deep neural networks have been employed for various spoken language recognition tasks, including tasks that are multilingual by definition such as spoken language identification. In this paper, we present a neural model for Slavic language identifica
In this paper, we discuss an attempt to develop an automatic language identification system for 5 closely-related Indo-Aryan languages of India, Awadhi, Bhojpuri, Braj, Hindi and Magahi. We have compiled a comparable corpora of varying length for the