ﻻ يوجد ملخص باللغة العربية
In regression models, predictor variables with inherent ordering, such as tumor staging ranging and ECOG performance status, are commonly seen in medical settings. Statistically, it may be difficult to determine the functional form of an ordinal predictor variable. Often, such a variable is dichotomized based on whether it is above or below a certain cutoff. Other methods conveniently treat the ordinal predictor as a continuous variable and assume a linear relationship with the outcome. However, arbitrarily choosing a method may lead to inaccurate inference and treatment. In this paper, we propose a Bayesian mixture model to simultaneously assess the appropriate form of the predictor in regression models by considering the presence of a changepoint through the lens of a threshold detection problem. By using a mixture model framework to consider both dichotomous and linear forms for the variable, the estimate is a weighted average of linear and binary parameterizations. This method is applicable to continuous, binary, and survival outcomes, and easily amenable to penalized regression. We evaluated the proposed method using simulation studies and apply it to two real datasets. We provide JAGS code for easy implementation.
In some contexts, mixture models can fit certain variables well at the expense of others in ways beyond the analysts control. For example, when the data include some variables with non-trivial amounts of missing values, the mixture model may fit the
While there have been a lot of recent developments in the context of Bayesian model selection and variable selection for high dimensional linear models, there is not much work in the presence of change point in literature, unlike the frequentist coun
We propose a new method for changepoint estimation in partially-observed, high-dimensional time series that undergo a simultaneous change in mean in a sparse subset of coordinates. Our first methodological contribution is to introduce a MissCUSUM tra
The use of a finite mixture of normal distributions in model-based clustering allows to capture non-Gaussian data clusters. However, identifying the clusters from the normal components is challenging and in general either achieved by imposing constra
Diffusion tensor imaging (DTI) is a popular magnetic resonance imaging technique used to characterize microstructural changes in the brain. DTI studies quantify the diffusion of water molecules in a voxel using an estimated 3x3 symmetric positive def