ﻻ يوجد ملخص باللغة العربية
Diffusion tensor imaging (DTI) is a popular magnetic resonance imaging technique used to characterize microstructural changes in the brain. DTI studies quantify the diffusion of water molecules in a voxel using an estimated 3x3 symmetric positive definite diffusion tensor matrix. Statistical analysis of DTI data is challenging because the data are positive definite matrices. Matrix-variate information is often summarized by a univariate quantity, such as the fractional anisotropy (FA), leading to a loss of information. Furthermore, DTI analyses often ignore the spatial association of neighboring voxels, which can lead to imprecise estimates. Although the spatial modeling literature is abundant, modeling spatially dependent positive definite matrices is challenging. To mitigate these issues, we propose a matrix-variate Bayesian semiparametric mixture model, where the positive definite matrices are distributed as a mixture of inverse Wishart distributions with the spatial dependence captured by a Markov model for the mixture component labels. Conjugacy and the double Metropolis-Hastings algorithm result in fast and elegant Bayesian computing. Our simulation study shows that the proposed method is more powerful than non-spatial methods. We also apply the proposed method to investigate the effect of cocaine use on brain structure. The contribution of our work is to provide a novel statistical inference tool for DTI analysis by extending spatial statistics to matrix-variate data.
Geostatistical modeling for continuous point-referenced data has been extensively applied to neuroimaging because it produces efficient and valid statistical inference. However, diffusion tensor imaging (DTI), a neuroimaging characterizing the brain
Diffusion MRI is a neuroimaging technique measuring the anatomical structure of tissues. Using diffusion MRI to construct the connections of tissues, known as fiber tracking, is one of the most important uses of diffusion MRI. Many techniques are ava
In this paper, a Bayesian semiparametric copula approach is used to model the underlying multivariate distribution $F_{true}$. First, the Dirichlet process is constructed on the unknown marginal distributions of $F_{true}$. Then a Gaussian copula mod
The cyclical and heterogeneous nature of many substance use disorders highlights the need to adapt the type or the dose of treatment to accommodate the specific and changing needs of individuals. The Adaptive Treatment for Alcohol and Cocaine Depende
We introduce a new class of semiparametric latent variable models for long memory discretized event data. The proposed methodology is motivated by a study of bird vocalizations in the Amazon rain forest; the timings of vocalizations exhibit self-simi