ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Method for Detecting Solar Atmospheric Gravity Waves

93   0   0.0 ( 0 )
 نشر من قبل Daniele Calchetti
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Internal gravity waves have been observed in the Earths atmosphere and oceans, on Mars and Jupiter, and in the Suns atmosphere. Despite ample evidence for the existence of propagating gravity waves in the Suns atmosphere, we still do not have a full understanding of their characteristics and overall role for the dynamics and energetics of the solar atmosphere. Here we present a new approach to study the propagation of gravity waves in the solar atmosphere. It is based on calculating the three-dimensional cross-correlation function between the vertical velocities measured at different heights. We apply this new method to a time series of co-spatial and co-temporal Doppler images obtained by SOHO/MDI and Hinode/SOT as well as to simulations of upward propagating gravity wave packets. We show some preliminary results and outline future developments.



قيم البحث

اقرأ أيضاً

We present a Bayesian-odds-ratio-based algorithm for detecting stellar flares in light curve data. We assume flares are described by a model in which there is a rapid rise with a half-Gaussian profile, followed by an exponential decay. Our signal mod el also contains a polynomial background model. This is required to fit underlying light curve variations that are expected in the data, which could otherwise partially mimic a flare. We characterise the false alarm probability and efficiency of this method and compare it with a simpler thresholding method based on that used in Walkowicz et al (2011). We find our method has a significant increase in detection efficiency for low signal-to-noise ratio (S/N) flares. For a conservative false alarm probability our method can detect 95% of flares with S/N less than ~20, as compared to S/N of ~25 for the simpler method. As an example we have applied our method to a selection of stars in Kepler Quarter 1 data. The method finds 687 flaring stars with a total of 1873 flares after vetos have been applied. For these flares we have characterised their durations and and signal-to-noise ratios.
Slow waves are commonly observed on the entire solar atmosphere. Assuming a thin flux tube approximation, the cut-off periods of slow-mode magneto-acoustic-gravity waves that travel from the photosphere to the corona were obtained in Costa et al. (20 18). In that paper, however, a typo in the specific heat coefficient at constant pressure $c_{mathrm{p}}$ value led to an inconsistency in the cut-off calculation, which is only significant at the transition region. Due to the abrupt temperature change in the region, a change of the mean atomic weight (by a factor of approximately two) also occurs, but is often overlooked in analytical models for simplicity purposes. In this paper, we revisit the calculation of the cut-off periods of magneto-acoustic-gravity waves in Costa et al. (2018) by considering an atmosphere in hydrostatic equilibrium with a temperature profile, with the inclusion of the variation of the mean atomic weight and the correction of the inconsistency aforementioned. In addition, we show that the cut-off periods obtained analytically are consistent with the corresponding periods measured in observations of a particular active region.
Pulsars are the most stable macroscopic clocks found in nature. Spinning with periods as short as a few milliseconds, their stability can supersede that of the best atomic clocks on Earth over timescales of a few years. Stable clocks are synonymous w ith precise measurements, which is why pulsars play a role of paramount importance in testing fundamental physics. As a pulsar rotates, the radio beam emitted along its magnetic axis appears to us as pulses because of the lighthouse effect. Thanks to the extreme regularity of the emitted pulses, minuscule disturbances leave particular fingerprints in the times-of-arrival (TOAs) measured on Earth with the technique of pulsar timing. Tiny deviations from the expected TOAs, predicted according to a theoretical timing model based on known physics, can therefore reveal a plethora of interesting new physical effects. Pulsar timing can be used to measure the dynamics of pulsars in compact binaries, thus probing the post-Newtonian expansion of general relativity beyond the weak field regime, while offering unique possibilities of constraining alternative theories of gravity. Additionally, the correlation of TOAs from an ensemble of millisecond pulsars can be exploited to detect low-frequency gravitational waves of astrophysical and cosmological origins. We present a comprehensive review of the many applications of pulsar timing as a probe of gravity, describing in detail the general principles, current applications and results, as well as future prospects.
A background of nanohertz gravitational waves from supermassive black hole binaries could soon be detected by pulsar timing arrays, which measure the times-of-arrival of radio pulses from millisecond pulsars with very high precision. The European Pul sar Timing Array uses five large European radio telescopes to monitor high-precision millisecond pulsars, imposing in this way strong constraints on a gravitational wave background. To achieve the necessary precision needed to detect gravitational waves, the Large European Array for Pulsars (LEAP) performs simultaneous observations of pulsars with all five telescopes, which allows us to coherently add the radio pulses, maximize the signal-to-noise of pulsar signals and increase the precision of times-of-arrival. We report on the progress made and results obtained by the LEAP collaboration, and in particular on the addition of the Sardinia Radio Telescope to the LEAP observations during its scientific validation phase. In addition, we discuss how LEAP can be used to monitor strong-gravity systems such as double neutron star systems and impose strong constraints on post-keplerian parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا