ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulsar observations with European telescopes for testing gravity and detecting gravitational waves

55   0   0.0 ( 0 )
 نشر من قبل Delphine Perrodin
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A background of nanohertz gravitational waves from supermassive black hole binaries could soon be detected by pulsar timing arrays, which measure the times-of-arrival of radio pulses from millisecond pulsars with very high precision. The European Pulsar Timing Array uses five large European radio telescopes to monitor high-precision millisecond pulsars, imposing in this way strong constraints on a gravitational wave background. To achieve the necessary precision needed to detect gravitational waves, the Large European Array for Pulsars (LEAP) performs simultaneous observations of pulsars with all five telescopes, which allows us to coherently add the radio pulses, maximize the signal-to-noise of pulsar signals and increase the precision of times-of-arrival. We report on the progress made and results obtained by the LEAP collaboration, and in particular on the addition of the Sardinia Radio Telescope to the LEAP observations during its scientific validation phase. In addition, we discuss how LEAP can be used to monitor strong-gravity systems such as double neutron star systems and impose strong constraints on post-keplerian parameters.



قيم البحث

اقرأ أيضاً

Pulsars are the most stable macroscopic clocks found in nature. Spinning with periods as short as a few milliseconds, their stability can supersede that of the best atomic clocks on Earth over timescales of a few years. Stable clocks are synonymous w ith precise measurements, which is why pulsars play a role of paramount importance in testing fundamental physics. As a pulsar rotates, the radio beam emitted along its magnetic axis appears to us as pulses because of the lighthouse effect. Thanks to the extreme regularity of the emitted pulses, minuscule disturbances leave particular fingerprints in the times-of-arrival (TOAs) measured on Earth with the technique of pulsar timing. Tiny deviations from the expected TOAs, predicted according to a theoretical timing model based on known physics, can therefore reveal a plethora of interesting new physical effects. Pulsar timing can be used to measure the dynamics of pulsars in compact binaries, thus probing the post-Newtonian expansion of general relativity beyond the weak field regime, while offering unique possibilities of constraining alternative theories of gravity. Additionally, the correlation of TOAs from an ensemble of millisecond pulsars can be exploited to detect low-frequency gravitational waves of astrophysical and cosmological origins. We present a comprehensive review of the many applications of pulsar timing as a probe of gravity, describing in detail the general principles, current applications and results, as well as future prospects.
118 - S.-X Yi , S.-N. Zhang 2016
The maximum frequency of gravitational waves (GWs) detectable with traditional pulsar timing methods is set by the Nyquist frequency ($f_{rm{Ny}}$) of the observation. Beyond this frequency, GWs leave no temporal-correlated signals; instead, they app ear as white noise in the timing residuals. The variance of the GW-induced white noise is a function of the position of the pulsars relative to the GW source. By observing this unique functional form in the timing data, we propose that we can detect GWs of frequency $>$ $f_{rm{Ny}}$ (super-Nyquist frequency GWs; SNFGWs). We demonstrate the feasibility of the proposed method with simulated timing data. Using a selected dataset from the Parkes Pulsar Timing Array data release 1 and the North American Nanohertz Observatory for Gravitational Waves publicly available datasets, we try to detect the signals from single SNFGW sources. The result is consistent with no GW detection with 65.5% probability. An all-sky map of the sensitivity of the selected pulsar timing array to single SNFGW sources is generated, and the position of the GW source where the selected pulsar timing array is most sensitive to is $lambda_{rm{s}}=-0.82$, $beta_{rm{s}}=-1.03$ (rad); the corresponding minimum GW strain is $h=6.31times10^{-11}$ at $f=1times10^{-5}$ Hz.
Searches for gravitational waves crucially depend on exact signal processing of noisy strain data from gravitational wave detectors, which are known to exhibit significant non-Gaussian behavior. In this paper, we study two distinct non-Gaussian effec ts in the LIGO/Virgo data which reduce the sensitivity of searches: first, variations in the noise power spectral density (PSD) on timescales of more than a few seconds; and second, loud and abrupt transient `glitches of terrestrial or instrumental origin. We derive a simple procedure to correct, at first order, the effect of the variation in the PSD on the search background. Given the knowledge of the existence of localized glitches in particular segments of data, we also develop a method to insulate statistical inference from these glitches, so as to cleanly excise them without affecting the search background in neighboring seconds. We show the importance of applying these methods on the publicly available LIGO data, and measure an increase in the detection volume of at least $15%$ from the PSD-drift correction alone, due to the improved background distribution.
We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrades astrophysical applications. We present a comprehensive study of the detectors tech nical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrades implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z~6 and would be sensitive to intermediate-mass black holes up to 2000 M_odot. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz, and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r-modes and the gravitational memory effects.
Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems will modulate the arrival times of pulses from radio puls ars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrain the characteristic amplitude of this background, $A_{rm c,yr}$, to be < $1.0times10^{-15}$ with 95% confidence. This limit excludes predicted ranges for $A_{rm c,yr}$ from current models with 91-99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments, and that higher-cadence and shorter-wavelength observations would result in an increased sensitivity to gravitational waves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا