ﻻ يوجد ملخص باللغة العربية
We present a general symmetry-based framework for obtaining many-body Hamiltonians with scarred eigenstates that do not obey the eigenstate thermalization hypothesis. Our models are derived from parent Hamiltonians with a non-Abelian (or q-deformed) symmetry, whose eigenspectra are organized as degenerate multiplets that transform as irreducible representations of the symmetry (`tunnels). We show that large classes of perturbations break the symmetry, but in a manner that preserves a particular low-entanglement multiplet of states -- thereby giving generic, thermal spectra with a `shadow of the broken symmetry in the form of scars. The generators of the Lie algebra furnish operators with `spectrum generating algebras that can be used to lift the degeneracy of the scar states and promote them to equally spaced `towers. Our framework applies to several known models with scars, but we also introduce new models with scars that transform as irreducible representations of symmetries such as SU(3) and $q$-deformed SU(2), significantly generalizing the types of systems known to harbor this phenomenon. Additionally, we present new examples of generalized AKLT models with scar states that do not transform in an irreducible representation of the relevant symmetry. These are derived from parent Hamiltonians with enhanced symmetries, and bring AKLT-like models into our framework.
Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras
We consider a general model, describing a quantum impurity with degenerate energy levels, interacting with a gas of itinerant electrons, derive general scaling equation for the model, and analyse the connection between its particular forms and the sy
In this paper, first we introduce the notion of a Reynolds operator on an $n$-Lie algebra and illustrate the relationship between Reynolds operators and derivations on an $n$-Lie algebra. We give the cohomology theory of Reynolds operators on an $n$-
After recalling the notion of Lie algebroid, we construct these structures associated with contact forms or systems. We are then interested in particular classes of Lie Rinehart algebras.
We construct ternary self-distributive (TSD) objects from compositions of binary Lie algebras, $3$-Lie algebras and, in particular, ternary Nambu-Lie algebras. We show that the structures obtained satisfy an invertibility property resembling that of