ترغب بنشر مسار تعليمي؟ اضغط هنا

3-Lie Algebras, Ternary Nambu-Lie algebras and link invariants

193   0   0.0 ( 0 )
 نشر من قبل Emanuele Zappala
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct ternary self-distributive (TSD) objects from compositions of binary Lie algebras, $3$-Lie algebras and, in particular, ternary Nambu-Lie algebras. We show that the structures obtained satisfy an invertibility property resembling that of racks. We prove that these structures give rise to Yang-Baxter operators in the tensor product of the base vector space and, upon defining suitable twisting isomorphisms, we obtain representations of the infinite (framed) braid group. We use these results to construct invariants of (framed) links. We consider examples for low-dimensional Lie algebras, where the ternary bracket is defined by composition of the binary ones, along with simple $3$-Lie algebras, and their applications to some classes of links.



قيم البحث

اقرأ أيضاً

228 - Frederic Chapoton 2007
We prove that free pre-Lie algebras, when considered as Lie algebras, are free. Working in the category of S-modules, we define a natural filtration on the space of generators. We also relate the symmetric group action on generators with the structure of the anticyclic PreLie operad.
161 - Jiv{r}i Hrivnak 2015
In this thesis new objects to the existing set of invariants of Lie algebras are added. These invariant characteristics are capable of describing the nilpotent parametric continuum of Lie algebras. The properties of these invariants, in view of possi ble alternative classifications of Lie algebras, are formulated and their behaviour on known lower--dimensional Lie algebras investigated. It is demonstrated that these invariants, in view of their application on graded contractions of sl(3,C), are also effective in higher dimensions. A necessary contraction criterion involving these invariants is derived and applied to lower--dimensional cases. Possible application of these invariant characteristics to Jordan algebras is investigated.
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants (generalized Casimir operators) are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of [J. Phys. A: Math. Gen., 2006, V.39, 5749; math-ph/0602046], developed further in [J. Phys. A: Math. Theor., 2007, V.40, 113; math-ph/0606045], is used to determine the invariants. A conjecture of [J. Phys. A: Math. Gen., 2001, V.34, 9085], concerning the number of independent invariants and their form, is corroborated.
99 - Shuai Hou , Yunhe Sheng 2021
In this paper, first we introduce the notion of a twisted Rota-Baxter operator on a 3-Lie algebra $g$ with a representation on $V$. We show that a twisted Rota-Baxter operator induces a 3-Lie algebra structure on $V$, which represents on $g$. By this fact, we define the cohomology of a twisted Rota-Baxter operator and study infinitesimal deformations of a twisted Rota-Baxter operator using the second cohomology group. Then we introduce the notion of an NS-3-Lie algebra, which produces a 3-Lie algebra with a representation on itself. We show that a twisted Rota-Baxter operator induces an NS-3-Lie algebra naturally. Thus NS-3-Lie algebras can be viewed as the underlying algebraic structures of twisted Rota-Baxter operators on 3-Lie algebras. Finally we show that a Nijenhuis operator on a 3-Lie algebra gives rise to a representation of the deformed 3-Lie algebra and a 2-cocycle. Consequently, the identity map will be a twisted Rota-Baxter operator on the deformed 3-Lie algebra. We also introduce the notion of a Reynolds operator on a 3-Lie algebra, which can serve as a special case of twisted Rota-Baxter operators on 3-Lie algebras.
In this paper, we define a class of 3-algebras which are called 3-Lie-Rinehart algebras. A 3-Lie-Rinehart algebra is a triple $(L, A, rho)$, where $A$ is a commutative associative algebra, $L$ is an $A$-module, $(A, rho)$ is a 3-Lie algebra $L$-modul e and $rho(L, L)subseteq Der(A)$. We discuss the basic structures, actions and crossed modules of 3-Lie-Rinehart algebras and construct 3-Lie-Rinehart algebras from given algebras, we also study the derivations from 3-Lie-Rinehart algebras to 3-Lie $A$-algebras. From the study, we see that there is much difference between 3-Lie algebras and 3-Lie-Rinehart algebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا