ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing band topology using modulational instability

31   0   0.0 ( 0 )
 نشر من قبل Daniel Leykam
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the modulational instability of nonlinear Bloch waves in topological photonic lattices. In the initial phase of the instability development captured by the linear stability analysis, long wavelength instabilities and bifurcations of the nonlinear Bloch waves are sensitive to topological band

قيم البحث

اقرأ أيضاً

We study, both theoretically and experimentally, modulational instability in optical fibers that have a longitudinal evolution of their dispersion in the form of a Dirac delta comb. By means of Floquet theory, we obtain an exact expression for the po sition of the gain bands, and we provide simple analytical estimates of the gain and of the bandwidths of those sidebands. An experimental validation of those results has been realized in several microstructured fibers specifically manufactured for that purpose. The dispersion landscape of those fibers is a comb of Gaussian pulses having widths much shorter than the period, which therefore approximate the ideal Dirac comb. Experimental spontaneous MI spectra recorded under quasi continuous wave excitation are in good agreement with the theory and with numerical simulations based on the generalized nonlinear Schrodinger equation.
87 - T. Hansson , D. Modotto , 2013
A study is made of frequency comb generation described by the driven and damped nonlinear Schrodinger equation on a finite interval. It is shown that frequency comb generation can be interpreted as a modulational instability of the continuous wave pu mp mode, and a linear stability analysis, taking into account the cavity boundary conditions, is performed. Further, a truncated three-wave model is derived, which allows one to gain additional insight into the dynamical behaviour of the comb generation. This formalism describes the pump mode and the most unstable sideband and is found to connect the coupled mode theory with the conventional theory of modulational instability. An in-depth analysis is done of the nonlinear three-wave model. It is demonstrated that stable frequency comb states can be interpreted as attractive fixed points of a dynamical system. The possibility of soft and hard excitation states in both the normal and the anomalous dispersion regime is discussed. Investigations are made of bistable comb states, and the dependence of the final state on the way the comb has been generated. The analytical predictions are verified by means of direct comparison with numerical simulations of the full equation and the agreement is discussed.
The machine learning technique of persistent homology classifies complex systems or datasets by computing their topological features over a range of characteristic scales. There is growing interest in applying persistent homology to characterize phys ical systems such as spin models and multiqubit entangled states. Here we propose persistent homology as a tool for characterizing and optimizing band structures of periodic photonic media. Using the honeycomb photonic lattice Haldane model as an example, we show how persistent homology is able to reliably classify a variety of band structures falling outside the usual paradigms of topological band theory, including moat band and multi-valley dispersion relations, and thereby control the properties of quantum emitters embedded in the lattice. The method is promising for the automated design of more complex systems such as photonic crystals and Moire superlattices.
Topological invariants characterising filled Bloch bands attract enormous interest, underpinning electronic topological insulators and analogous artificial lattices for Bose-Einstein condensates, photons, and acoustic waves. In the latter bosonic sys tems there is no Fermi exclusion principle to enforce uniform band filling, which makes measurement of their bulk topological invariants challenging. Here we show how to achieve controllable filling of bosonic bands using leaky photonic lattices. Leaky photonic lattices host transitions between bound and radiative modes at a critical energy, which plays a role analogous to the electronic Fermi level. Tuning this effective Fermi level into a band gap results in disorder-robust dynamical quantization of bulk topological invariants such as the Chern number. Our findings establish leaky lattices as a novel and highly flexible platform for exploring topological and non-Hermitian wave physics.
We introduce the first principle model describing frequency comb generation in a WGM microresonator with the backscattering-induced coupling between the counter-propagating waves. {Elaborated model provides deep insight and accurate description of th e complex dynamics of nonlinear processes in such systems.} We analyse the backscattering impact on the splitting and reshaping of the nonlinear resonances, demonstrate backscattering-induced modulational instability in the normal dispersion regime and subsequent frequency comb generation. We present and discuss novel features of the soliton comb dynamics induced by the backward wave.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا