ترغب بنشر مسار تعليمي؟ اضغط هنا

KiDS-1000 catalogue: Redshift distributions and their calibration

112   0   0.0 ( 0 )
 نشر من قبل Hendrik Hildebrandt
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present redshift distribution estimates of galaxies selected from the fourth data release of the Kilo-Degree Survey over an area of $sim1000$ deg$^2$ (KiDS-1000). These redshift distributions represent one of the crucial ingredients for weak gravitational lensing measurements with the KiDS-1000 data. The primary estimate is based on deep spectroscopic reference catalogues that are re-weighted with the help of a self-organising map (SOM) to closely resemble the KiDS-1000 sources, split into five tomographic redshift bins in the photometric redshift range $0.1<z_mathrm{B}le1.2$. Sources are selected such that they only occupy that volume of nine-dimensional magnitude-space that is also covered by the reference samples (`gold selection). Residual biases in the mean redshifts determined from this calibration are estimated from mock catalogues to be $lesssim0.01$ for all five bins with uncertainties of $sim 0.01$. This primary SOM estimate of the KiDS-1000 redshift distributions is complemented with an independent clustering redshift approach. After validation of the clustering-$z$ on the same mock catalogues and a careful assessment of systematic errors, we find no significant bias of the SOM redshift distributions with respect to the clustering-$z$ measurements. The SOM redshift distributions re-calibrated by the clustering-$z$ represent an alternative calibration of the redshift distributions with only slightly larger uncertainties in the mean redshifts of $sim 0.01-0.02$ to be used in KiDS-1000 cosmological weak lensing analyses. As this includes the SOM uncertainty, clustering-$z$ are shown to be fully competitive on KiDS-1000 data.



قيم البحث

اقرأ أيضاً

We present weak lensing shear catalogues from the fourth data release of the Kilo-Degree Survey, KiDS-1000, spanning 1006 square degrees of deep and high-resolution imaging. Our `gold-sample of galaxies, with well-calibrated photometric redshift dist ributions, consists of 21 million galaxies with an effective number density of $6.17$ galaxies per square arcminute. We quantify the accuracy of the spatial, temporal, and flux-dependent point-spread function (PSF) model, verifying that the model meets our requirements to induce less than a $0.1sigma$ change in the inferred cosmic shear constraints on the clustering cosmological parameter $S_8 = sigma_8sqrt{Omega_{rm m}/0.3}$. Through a series of two-point null-tests, we validate the shear estimates, finding no evidence for significant non-lensing B-mode distortions in the data. The PSF residuals are detected in the highest-redshift bins, originating from object selection and/or weight bias. The amplitude is, however, shown to be sufficiently low and within our stringent requirements. With a shear-ratio null-test, we verify the expected redshift scaling of the galaxy-galaxy lensing signal around luminous red galaxies. We conclude that the joint KiDS-1000 shear and photometric redshift calibration is sufficiently robust for combined-probe gravitational lensing and spectroscopic clustering analyses.
We present the methodology for a joint cosmological analysis of weak gravitational lensing from the fourth data release of the ESO Kilo-Degree Survey (KiDS-1000) and galaxy clustering from the partially overlapping BOSS and 2dFLenS surveys. Cross-cor relations between galaxy positions and ellipticities have been incorporated into the analysis, necessitating a hybrid model of non-linear scales that blends perturbative and non-perturbative approaches, and an assessment of contributions by astrophysical effects. All weak lensing signals are measured consistently via Fourier-space statistics that are insensitive to the survey mask and display low levels of mode mixing. The calibration of photometric redshift distributions and multiplicative gravitational shear bias has been updated, and a more complete tally of residual calibration uncertainties is propagated into the likelihood. A dedicated suite of more than 20000 mocks is used to assess the performance of covariance models and to quantify the impact of survey geometry and spatial variations of survey depth on signals and their errors. The sampling distributions for the likelihood and the $chi^2$ goodness-of-fit statistic have been validated, with proposed changes to the number of degrees of freedom. Standard weak lensing point estimates on $S_8=sigma_8,(Omega_{rm m}/0.3)^{1/2}$ derived from its marginal posterior are easily misinterpreted to be biased low, and an alternative estimator and associated credible interval have been proposed. Known systematic effects pertaining to weak lensing modelling and inference are shown to bias $S_8$ by no more than 0.1 standard deviations, with the caveat that no conclusive validation data exist for models of intrinsic galaxy alignments. Compared to the previous KiDS analyses, $S_8$ constraints are expected to improve by 20% for weak lensing alone and by 29% for the joint analysis. [abridged]
We present constraints on extensions to the flat $Lambda$CDM cosmological model by varying the spatial curvature $Omega_K$, the sum of the neutrino masses $sum m_ u$, the dark energy equation of state parameter $w$, and the Hu-Sawicki $f(R)$ gravity $f_{R0}$ parameter. With the combined $3times2$pt measurements of cosmic shear from the Kilo-Degree Survey (KiDS-1000), galaxy clustering from the Baryon Oscillation Spectroscopic Survey (BOSS), and galaxy-galaxy lensing from the overlap between KiDS-1000, BOSS, and the spectroscopic 2-degree Field Lensing Survey (2dFLenS), we find results that are fully consistent with a flat $Lambda$CDM model with $Omega_K=0.011^{+0.054}_{-0.057}$, $sum m_ u<1.76$ eV (95% CL), and $w=-0.99^{+0.11}_{-0.13}$. The $f_{R0}$ parameter is unconstrained in our fully non-linear $f(R)$ cosmic shear analysis. Considering three different model selection criteria, we find no clear preference for either the fiducial flat $Lambda$CDM model or any of the considered extensions. Besides extensions to the flat $Lambda$CDM parameter space, we also explore restrictions to common subsets of the flat $Lambda$CDM parameter space by fixing the amplitude of the primordial power spectrum to the Planck best-fit value, as well as adding external data from supernovae and lensing of the CMB. Neither the beyond-$Lambda$CDM models nor the imposed restrictions explored in this analysis are able to resolve the $sim 3sigma$ tension in $S_8$ between the $3times2$pt constraints and Planck, with the exception of $w$CDM, where the $S_8$ tension is resolved. The tension in the $w$CDM case persists, however, when considering the joint $S_8$-$w$ parameter space. The joint flat $Lambda$CDM CMB lensing and $3times2$pt analysis is found to yield tight constraints on $Omega_{rm m}=0.307^{+0.008}_{-0.013}$, $sigma_8=0.769^{+0.022}_{-0.010}$, and $S_8=0.779^{+0.013}_{-0.013}$.
We constrain the luminosity and redshift dependence of the intrinsic alignment (IA) of a nearly volume-limited sample of luminous red galaxies selected from the fourth public data release of the Kilo-Degree Survey (KiDS-1000). To measure the shapes o f the galaxies, we used two complementary algorithms, finding consistent IA measurements for the overlapping galaxy sample. The global significance of IA detection across our two independent luminous red galaxy samples, with our favoured method of shape estimation, is $sim10.7sigma$. We find no significant dependence with redshift of the IA signal in the range $0.2<z<0.8$, nor a dependence with luminosity below $L_rlesssim 2.9 times 10^{10} h^{-2} L_{r,odot}$. Above this luminosity, however, we find that the IA signal increases as a power law, although our results are also compatible with linear growth within the current uncertainties. This behaviour motivates the use of a broken power law model when accounting for the luminosity dependence of IA contamination in cosmic shear studies.
Accurate photometric redshift calibration is central to the robustness of all cosmology constraints from cosmic shear surveys. Analyses of the KiDS re-weighted training samples from all overlapping spectroscopic surveys to provide a direct redshift c alibration. Using self-organising maps (SOMs) we demonstrate that this spectroscopic compilation is sufficiently complete for KiDS, representing $99%$ of the effective 2D cosmic shear sample. We use the SOM to define a $100%$ represented `gold cosmic shear sample, per tomographic bin. Using mock simulations of KiDS and the spectroscopic training set, we estimate the uncertainty on the SOM redshift calibration, and find that photometric noise, sample variance, and spectroscopic selection effects (including redshift and magnitude incompleteness) induce a combined maximal scatter on the bias of the redshift distribution reconstruction ($Delta langle z rangle=langle z rangle_{rm est}-langle z rangle_{rm true}$) of $sigma_{Delta langle z rangle} leq 0.006$ in all tomographic bins. We show that the SOM calibration is unbiased in the cases of noiseless photometry and perfectly representative spectroscopic datasets, as expected from theory. The inclusion of both photometric noise and spectroscopic selection effects in our mock data introduces a maximal bias of $Delta langle z rangle =0.013pm0.006$, or $Delta langle z rangle leq 0.025$ at $97.5%$ confidence, once quality flags have been applied to the SOM. The method presented here represents a significant improvement over the previously adopted direct redshift calibration implementation for KiDS, owing to its diagnostic and quality assurance capabilities. The implementation of this method in future cosmic shear studies will allow better diagnosis, examination, and mitigation of systematic biases in photometric redshift calibration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا