ﻻ يوجد ملخص باللغة العربية
The $chi$-stability index ${rm es}_{chi}(G)$ of a graph $G$ is the minimum number of its edges whose removal results in a graph with the chromatic number smaller than that of $G$. In this paper three open problems from [European J. Combin. 84 (2020) 103042] are considered. Examples are constructed which demonstrate that a known characterization of $k$-regular ($kle 5$) graphs $G$ with ${rm es}_{chi}(G) = 1$ does not extend to $kge 6$. Graphs $G$ with $chi(G)=3$ for which ${rm es}_{chi}(G)+{rm es}_{chi}(overline{G}) = 2$ holds are characterized. Necessary conditions on graphs $G$ which attain a known upper bound on ${rm es}_{chi}(G)$ in terms of the order and the chromatic number of $G$ are derived. The conditions are proved to be sufficient when $nequiv 2 pmod 3$ and $chi(G)=3$.
Given a proper edge coloring $varphi$ of a graph $G$, we define the palette $S_{G}(v,varphi)$ of a vertex $v in V(G)$ as the set of all colors appearing on edges incident with $v$. The palette index $check s(G)$ of $G$ is the minimum number of distin
In this paper, we characterize the extremal digraphs with the maximal or minimal $alpha$-spectral radius among some digraph classes such as rose digraphs, generalized theta digraphs and tri-ring digraphs with given size $m$. These digraph classes are
The strong chromatic index of a graph $G$, denoted $chi_s(G)$, is the least number of colors needed to edge-color $G$ so that edges at distance at most two receive distinct colors. The strong list chromatic index, denoted $chi_{s,ell}(G)$, is the lea
In this note we obtain a new bound for the acyclic edge chromatic number $a(G)$ of a graph $G$ with maximum degree $D$ proving that $a(G)leq 3.569(D-1)$. To get this result we revisit and slightly modify the method described in [Giotis, Kirousis, Psa
An extension of the well-known Szeged index was introduced recently, named as weighted Szeged index ($textrm{sz}(G)$). This paper is devoted to characterizing the extremal trees and graphs of this new topological invariant. In particular, we proved t