ترغب بنشر مسار تعليمي؟ اضغط هنا

Homotopy ribbon concordance, Blanchfield pairings, and twisted Alexander polynomials

153   0   0.0 ( 0 )
 نشر من قبل Lukas Lewark
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish homotopy ribbon concordance obstructions coming from the Blanchfield form and Levine-Tristram signatures. Then, as an application of twisted Alexander polynomials, we show that for every knot K with nontrivial Alexander polynomial, there exists an infinite family of knots that are all concordant to K and have the same Blanchfield form as K, such that no pair of knots in that family is homotopy ribbon concordant.



قيم البحث

اقرأ أيضاً

We show that if a link J in the 3-sphere is homotopy ribbon concordant to a link L then the Alexander polynomial of L divides the Alexander polynomial of J.
In this paper we give an explicit formula for the twisted Alexander polynomial of any torus link and show that it is a locally constant function on the $SL(2, mathbb C)$-character variety. We also discuss similar things for the higher dimensional twi sted Alexander polynomial and the Reidemeister torsion.
In this paper we apply the twisted Alexander polynomial to study the fibering and genus detecting problems for oriented links. In particular we generalize a conjecture of Dunfield, Friedl and Jackson on the torsion polynomial of hyperbolic knots to h yperbolic links, and confirm it for an infinite family of hyperbolic 2-bridge links. Moreover we consider a similar problem for parabolic representations of 2-bridge link groups.
190 - Takahiro Kitayama 2014
The coefficients of twisted Alexander polynomials of a knot induce regular functions of the $SL_2(mathbb{C})$-character variety. We prove that the function of the highest degree has a finite value at an ideal point which gives a minimal genus Seifert surface by Culler-Shalen theory. It implies a partial affirmative answer to a conjecture by Dunfield, Friedl and Jackson.
253 - Takahiro Kitayama 2014
We study incompressible surfaces constructed by Culler-Shalen theory in the context of twisted Alexander polynomials. For a $1$st cohomology class of a $3$-manifold the coefficients of twisted Alexander polynomials induce regular functions on the $SL _2(mathbb{C})$-character variety. We prove that if an ideal point gives a Thurston norm minimizing non-separating surface dual to the cohomology class, then the regular function of the highest degree has a finite value at the ideal point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا