ﻻ يوجد ملخص باللغة العربية
We study incompressible surfaces constructed by Culler-Shalen theory in the context of twisted Alexander polynomials. For a $1$st cohomology class of a $3$-manifold the coefficients of twisted Alexander polynomials induce regular functions on the $SL_2(mathbb{C})$-character variety. We prove that if an ideal point gives a Thurston norm minimizing non-separating surface dual to the cohomology class, then the regular function of the highest degree has a finite value at the ideal point.
The coefficients of twisted Alexander polynomials of a knot induce regular functions of the $SL_2(mathbb{C})$-character variety. We prove that the function of the highest degree has a finite value at an ideal point which gives a minimal genus Seifert
In this paper we give an explicit formula for the twisted Alexander polynomial of any torus link and show that it is a locally constant function on the $SL(2, mathbb C)$-character variety. We also discuss similar things for the higher dimensional twi
In this paper we apply the twisted Alexander polynomial to study the fibering and genus detecting problems for oriented links. In particular we generalize a conjecture of Dunfield, Friedl and Jackson on the torsion polynomial of hyperbolic knots to h
We establish homotopy ribbon concordance obstructions coming from the Blanchfield form and Levine-Tristram signatures. Then, as an application of twisted Alexander polynomials, we show that for every knot K with nontrivial Alexander polynomial, there
We study the twisted Alexander polynomial from the viewpoint of the SL(2,C)-character variety of nonabelian representations of a knot group. It is known that if a knot is fibered, then the twisted Alexander polynomials associated with nonabelian SL(2