ﻻ يوجد ملخص باللغة العربية
The detection of gravitational waves (GWs) and an accompanying electromagnetic (E/M) counterpart have been suggested as a future probe for cosmology and theories of gravity. In this paper, we present calculations of the luminosity distance of sources taking into account inhomogeneities in the matter distribution that are predicted in numerical simulations of structure formation. In addition, we show that inhomogeneities resulting from clustering of matter can mimic certain classes of modified gravity theories, or other effects that dampen GW amplitudes, and deviations larger than $delta u sim mathcal{O}(0.1) (99% rm{C.L.})$ to the extra friction term $ u$, from zero, would be necessary to distinguish them. For these, we assume mock GWs sources, with known redshift, based on binary population synthesis models, between redshifts $z=0$ and $z=5$. We show that future GW detectors, like Einstein Telescope or Cosmic Explorer, will be needed for strong constraints on the inhomogeneity parameters and breaking the degeneracy between modified gravity effects and matter anisotropies by measuring $ u$ at $5 %$ and $1 %$ level with $100$ and $350$ events respectively.
Modifications of General Relativity leave their imprint both on the cosmic expansion history through a non-trivial dark energy equation of state, and on the evolution of cosmological perturbations in the scalar and in the tensor sectors. In particula
In a recent work, Baldi et al. highlighted the issue of cosmic degeneracies, consisting in the fact that the standard statistics of the large-scale structure might not be sufficient to conclusively test cosmological models beyond $Lambda $CDM when mu
We present a convolutional neural network to classify distinct cosmological scenarios based on the statistically similar weak-lensing maps they generate. Modified gravity (MG) models that include massive neutrinos can mimic the standard concordance m
Studies of dark energy at advanced gravitational-wave (GW) interferometers normally focus on the dark energy equation of state $w_{rm DE}(z)$. However, modified gravity theories that predict a non-trivial dark energy equation of state generically als
In the next decades, the gravitational-wave (GW) standard siren observations and the neutral hydrogen 21 cm intensity mapping (IM) surveys, as two promising non-optical cosmological probes, will play an important role in precisely measuring cosmologi