ﻻ يوجد ملخص باللغة العربية
Modifications of General Relativity leave their imprint both on the cosmic expansion history through a non-trivial dark energy equation of state, and on the evolution of cosmological perturbations in the scalar and in the tensor sectors. In particular, the modification in the tensor sector gives rise to a notion of gravitational-wave (GW) luminosity distance, different from the standard electromagnetic luminosity distance, that can be studied with standard sirens at GW detectors such as LISA or third-generation ground based experiments. We discuss the predictions for modified GW propagation from some of the best studied theories of modified gravity, such as Horndeski or the more general degenerate higher order scalar-tensor (DHOST) theories, non-local infrared modifications of gravity, bigravity theories and the corresponding phenomenon of GW oscillation, as well as theories with extra or varying dimensions. We show that modified GW propagation is a completely generic phenomenon in modified gravity. We then use a simple parametrization of the effect in terms of two parameters $(Xi_0,n)$, that is shown to fit well the results from a large class of models, to study the prospects of observing modified GW propagation using supermassive black hole binaries as standard sirens with LISA. We construct mock source catalogs and perform detailed Markov Chain Monte Carlo studies of the likelihood obtained from LISA standard sirens alone, as well as by combining them with CMB, BAO and SNe data to reduce the degeneracies between cosmological parameters. We find that the combination of LISA with the other cosmological datasets allows one to measure the parameter $Xi_0$ that characterizes modified GW propagation to the percent level accuracy, sufficient to test several modified gravity theories. [Abridged]
Quasars have recently been used as an absolute distance indicator, extending the Hubble diagram to high redshift to reveal a deviation from the expansion history predicted for the standard, $Lambda$CDM cosmology. Here we show that the Laser Interfero
We use the cosmic shear data from the Canada-France-Hawaii Telescope Lensing Survey to place constraints on $f(R)$ and {it Generalized Dilaton} models of modified gravity. This is highly complimentary to other probes since the constraints mainly come
We explore the cosmological implications of five modified gravity (MG) models by using the recent cosmological observational data, including the recently released SNLS3 type Ia supernovae sample, the cosmic microwave background anisotropy data from t
Gravitational waves (GWs) directly measure the luminosity distance to the merger, which, when combined with an independent measurement of the sources redshift, provides a novel probe of cosmology. The proposed next generation of ground-based GW detec
The recent Advanced LIGO detections of coalescing black hole binaries (BHBs) imply a large population of such systems emitting at milli-Hz frequencies, accessible to the Laser Interferometer Space Antenna (LISA). We show that these systems provide a