ﻻ يوجد ملخص باللغة العربية
We present limits on spin-independent dark matter-nucleon interactions using a $10.6$ $mathrm{g}$ Si athermal phonon detector with a baseline energy resolution of $sigma_E=3.86 pm 0.04$ $(mathrm{stat.})^{+0.19}_{-0.00}$ $(mathrm{syst.})$ $mathrm{eV}$. This exclusion analysis sets the most stringent dark matter-nucleon scattering cross-section limits achieved by a cryogenic detector for dark matter particle masses from $93$ to $140$ $mathrm{MeV}/c^2$, with a raw exposure of $9.9$ $mathrm{g}cdotmathrm{d}$ acquired at an above-ground facility. This work illustrates the scientific potential of detectors with athermal phonon sensors with eV-scale energy resolution for future dark matter searches.
The EDELWEISS collaboration has performed a search for dark matter particles with masses below the GeV-scale with a 33.4-g germanium cryogenic detector operated in a surface lab. The energy deposits were measured using a neutron-transmutation-doped G
This article presents an analysis and the resulting limits on light dark matter inelastically scattering off of electrons, and on dark photon and axion-like particle absorption, using a second-generation SuperCDMS high-voltage eV-resolution detector.
This Letter reports results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 $mu$eV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sens
We present the first limits on inelastic electron-scattering dark matter and dark photon absorption using a prototype SuperCDMS detector having a charge resolution of 0.1 electron-hole pairs (CDMS HVeV, a 0.93 gram CDMS HV device). These electron-rec
Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above $sim$ 5 GeV/c$^2$, but have limited sensitivity to lighter masses because of the small momentum transfer in dar