ﻻ يوجد ملخص باللغة العربية
We define for $mathbb{R}^kappa$-Anosov actions a notion of joint Ruelle resonance spectrum by using the techniques of anisotropic Sobolev spaces in the cohomological setting of joint Taylor spectra. We prove that these Ruelle-Taylor resonances are intrinsic and form a discrete subset of $mathbb{C}^kappa$ and that $0$ is always a leading resonance. The joint resonant states at $0$ give rise to measures of SRB type and the mixing properties of these measures are related to the existence of purely imaginary resonances. The spectral theory developed in this article applies in particular to the case of Weyl chamber flows and provides a new way to study such flows.
Given a general Anosov abelian action on a closed manifold, we study properties of certain invariant measures that have recently been introduced in cite{BGHW20} using the theory of Ruelle-Taylor resonances. We show that these measures share many prop
We prove exponential decay of correlations for Holder continuous observables with respect to any Gibbs measure for contact Anosov flows admitting Pesin sets with exponentially small tails. This is achieved by establishing strong spectral estimates fo
Let $Gamma$ be a co-compact Fuchsian group of isometries on the Poincare disk $DD$ and $Delta$ the corresponding hyperbolic Laplace operator. Any smooth eigenfunction $f$ of $Delta$, equivariant by $Gamma$ with real eigenvalue $lambda=-s(1-s)$, where
In this work we study strong spectral properties of Ruelle transfer operators related to a large family of Gibbs measures for contact Anosov flows. The ultimate aim is to establish exponential decay of correlations for Holder observables with respect
We establish several characterizations of Anosov representations of word hyperbolic groups into real reductive Lie groups, in terms of a Cartan projection or Lyapunov projection of the Lie group. Using a properness criterion of Benoist and Kobayashi,