ترغب بنشر مسار تعليمي؟ اضغط هنا

Eigenfunctions of the Laplacian and associated Ruelle operator

147   0   0.0 ( 0 )
 نشر من قبل Artur Lopes O.
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $Gamma$ be a co-compact Fuchsian group of isometries on the Poincare disk $DD$ and $Delta$ the corresponding hyperbolic Laplace operator. Any smooth eigenfunction $f$ of $Delta$, equivariant by $Gamma$ with real eigenvalue $lambda=-s(1-s)$, where $s={1/2}+ it$, admits an integral representation by a distribution $dd_{f,s}$ (the Helgason distribution) which is equivariant by $Gamma$ and supported at infinity $partialDD=SS^1$. The geodesic flow on the compact surface $DD/Gamma$ is conjugate to a suspension over a natural extension of a piecewise analytic map $T:SS^1toSS^1$, the so-called Bowen-Series transformation. Let $ll_s$ be the complex Ruelle transfer operator associated to the jacobian $-sln |T|$. M. Pollicott showed that $dd_{f,s}$ is an eigenfunction of the dual operator $ll_s^*$ for the eigenvalue 1. Here we show the existence of a (nonzero) piecewise real analytic eigenfunction $psi_{f,s}$ of $ll_s$ for the eigenvalue 1, given by an integral formula [ psi_{f,s} (xi)=int frac{J(xi,eta)}{|xi-eta|^{2s}} dd_{f,s} (deta), ] oindent where $J(xi,eta)$ is a ${0,1}$-valued piecewise constant function whose definition depends upon the geometry of the Dirichlet fundamental domain representing the surface $DD/Gamma$.



قيم البحث

اقرأ أيضاً

92 - Genadi Levin 2020
We give necessary and sufficient conditions for a function in a naturally appearing functional space to be a fixed point of the Ruelle-Thurston operator associated to a rational function, see Lemma 2.1. The proof uses essentially a recent [13]. As an immediate consequence, we revisit Theorem 1 and Lemma 5.2 of [11], see Theorem 1 and Lemma 2.2 below.
We define for $mathbb{R}^kappa$-Anosov actions a notion of joint Ruelle resonance spectrum by using the techniques of anisotropic Sobolev spaces in the cohomological setting of joint Taylor spectra. We prove that these Ruelle-Taylor resonances are in trinsic and form a discrete subset of $mathbb{C}^kappa$ and that $0$ is always a leading resonance. The joint resonant states at $0$ give rise to measures of SRB type and the mixing properties of these measures are related to the existence of purely imaginary resonances. The spectral theory developed in this article applies in particular to the case of Weyl chamber flows and provides a new way to study such flows.
We consider a generalization of the Ruelle theorem for the case of continuous time problems. We present a result which we believe is important for future use in problems in Mathematical Physics related to $C^*$-Algebras We consider a finite state set $S$ and a stationary continuous time Markov Chain $X_t$, $tgeq 0$, taking values on S. We denote by $Omega$ the set of paths $w$ taking values on S (the elements $w$ are locally constant with left and right limits and are also right continuous on $t$). We consider an infinitesimal generator $L$ and a stationary vector $p_0$. We denote by $P$ the associated probability on ($Omega, {cal B}$). This is the a priori probability. All functions $f$ we consider bellow are in the set ${cal L}^infty (P)$. From the probability $P$ we define a Ruelle operator ${cal L}^t, tgeq 0$, acting on functions $f:Omega to mathbb{R}$ of ${cal L}^infty (P)$. Given $V:Omega to mathbb{R}$, such that is constant in sets of the form ${X_0=c}$, we define a modified Ruelle operator $tilde{{cal L}}_V^t, tgeq 0$. We are able to show the existence of an eigenfunction $u$ and an eigen-probability $ u_V$ on $Omega$ associated to $tilde{{cal L}}^t_V, tgeq 0$. We also show the following property for the probability $ u_V$: for any integrable $gin {cal L}^infty (P)$ and any real and positive $t$ $$ int e^{-int_0^t (V circ Theta_s)(.) ds} [ (tilde{{cal L}}^t_V (g)) circ theta_t ] d u_V = int g d u_V$$ This equation generalize, for the continuous time Markov Chain, a similar one for discrete time systems (and which is quite important for understanding the KMS states of certain $C^*$-algebras).
In this paper we numerically solve the eigenvalue problem $Delta u + lambda u = 0$ on the fractal region defined by the Koch Snowflake, with zero-Dirichlet or zero-Neumann boundary conditions. The Laplacian with boundary conditions is approximated by a large symmetric matrix. The eigenvalues and eigenvectors of this matrix are computed by ARPACK. We impose the boundary conditions in a way that gives improved accuracy over the previous computations of Lapidus, Neuberger, Renka & Griffith. We extrapolate the results for grid spacing $h$ to the limit $h rightarrow 0$ in order to estimate eigenvalues of the Laplacian and compare our results to those of Lapdus et al. We analyze the symmetry of the region to explain the multiplicity-two eigenvalues, and present a canonical choice of the two eigenfunctions that span each two-dimensional eigenspace.
Matching dynamical systems, through different forms of conjugacies and equivalences, has long been a fundamental concept, and a powerful tool, in the study and classification of nonlinear dynamic behavior (e.g. through normal forms). In this paper we will argue that the use of the Koopman operator and its spectrum is particularly well suited for this endeavor, both in theory, but also especially in view of recent data-driven algorithm developments. We believe, and document through illustrative examples, that this can nontrivially extend the use and applicability of the Koopman spectral theoretical and computational machinery beyond modeling and prediction, towards what can be considered as a systematic discovery of Cole-Hopf-type transformations for dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا