ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum proportional-integral (PI) control

54   0   0.0 ( 0 )
 نشر من قبل Mohan Sarovar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Feedback control is an essential component of many modern technologies and provides a key capability for emergent quantum technologies. We extend existing approaches of direct feedback control in which the controller applies a function directly proportional to the output signal (P feedback), to strategies in which feedback determined by an integrated output signal (I feedback), and to strategies in which feedback consists of a combination of P and I terms. The latter quantum PI feedback constitutes the analog of the widely used proportional-integral feedback of classical control. All of these strategies are experimentally feasible and require no complex state estimation. We apply the resulting formalism to two canonical quantum feedback control problems, namely, generation of an entangled state of two remote qubits, and stabilization of a harmonic oscillator under thermal noise under conditions of arbitrary measurement efficiency. These two problems allow analysis of the relative benefits of P, I, and PI feedback control. We find that for the two-qubit remote entanglement generation the best strategy can be a combined PI strategy when the measurement efficiency is less than one. In contrast, for harmonic state stabilization we find that P feedback shows the best performance when actuation of both position and momentum feedback is possible, while when only actuation of position is available, I feedback consistently shows the best performance, although feedback delay is shown to improve the performance of a P strategy here.

قيم البحث

اقرأ أيضاً

Conic optimization is the minimization of a differentiable convex objective function subject to conic constraints. We propose a novel primal-dual first-order method for conic optimization, named proportional-integral projected gradient method (PIPG). PIPG ensures that both the primal-dual gap and the constraint violation converge to zero at the rate of (O(1/k)), where (k) is the number of iterations. If the objective function is strongly convex, PIPG improves the convergence rate of the primal-dual gap to (O(1/k^2)). Further, unlike any existing first-order methods, PIPG also improves the convergence rate of the constraint violation to (O(1/k^3)). We demonstrate the application of PIPG in constrained optimal control problems.
57 - M. Yanagisawa 2004
We derive the quantum stochastic master equation for bosonic systems without measurement theory but control theory. It is shown that the quantum effect of the measurement can be represented as the correlation between dynamical and measurement noise. The transfer function representation allows us to analyze a dynamical uncertainty relation which imposes strong constraints on the dynamics of the linear quantum systems. In particular, quantum systems preserving the minimum uncertainty are uniquely determined. For large spin systems, it is shown that local dynamics are equivalent to bosonic systems. Considering global behavior, we find quantum effects to which there is no classical counterparts. A control problem of producing maximal entanglement is discussed as the stabilization of a filtering process.
This paper considers the application of integral Linear Quadratic Gaussian (LQG) optimal control theory to a problem of cavity locking in quantum optics. The cavity locking problem involves controlling the error between the laser frequency and the re sonant frequency of the cavity. A model for the cavity system, which comprises a piezo-electric actuator and an optical cavity is experimentally determined using a subspace identification method. An LQG controller which includes integral action is synthesized to stabilize the frequency of the cavity to the laser frequency and to reject low frequency noise. The controller is successfully implemented in the laboratory using a dSpace DSP board.
60 - Matthew James 2014
This paper explains some fundamental ideas of {em feedback} control of quantum systems through the study of a relatively simple two-level system coupled to optical field channels. The model for this system includes both continuous and impulsive dynam ics. Topics covered in this paper include open and closed loop control, impulsive control, optimal control, quantum filtering, quantum feedback networks, and coherent feedback control.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا