ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Learning Convolutions from Scratch

67   0   0.0 ( 0 )
 نشر من قبل Behnam Neyshabur
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Behnam Neyshabur




اسأل ChatGPT حول البحث

Convolution is one of the most essential components of architectures used in computer vision. As machine learning moves towards reducing the expert bias and learning it from data, a natural next step seems to be learning convolution-like structures from scratch. This, however, has proven elusive. For example, current state-of-the-art architecture search algorithms use convolution as one of the existing modules rather than learning it from data. In an attempt to understand the inductive bias that gives rise to convolutions, we investigate minimum description length as a guiding principle and show that in some settings, it can indeed be indicative of the performance of architectures. To find architectures with small description length, we propose $beta$-LASSO, a simple variant of LASSO algorithm that, when applied on fully-connected networks for image classification tasks, learns architectures with local connections and achieves state-of-the-art accuracies for training fully-connected nets on CIFAR-10 (85.19%), CIFAR-100 (59.56%) and SVHN (94.07%) bridging the gap between fully-connected and convolutional nets.



قيم البحث

اقرأ أيضاً

Convolutional neural networks have achieved astonishing results in different application areas. Various methods that allow us to use these models on mobile and embedded devices have been proposed. Especially binary neural networks are a promising app roach for devices with low computational power. However, training accurate binary models from scratch remains a challenge. Previous work often uses prior knowledge from full-precision models and complex training strategies. In our work, we focus on increasing the performance of binary neural networks without such prior knowledge and a much simpler training strategy. In our experiments we show that we are able to achieve state-of-the-art results on standard benchmark datasets. Further, to the best of our knowledge, we are the first to successfully adopt a network architecture with dense connections for binary networks, which lets us improve the state-of-the-art even further.
Binary Neural Networks (BNNs) show promising progress in reducing computational and memory costs but suffer from substantial accuracy degradation compared to their real-valued counterparts on large-scale datasets, e.g., ImageNet. Previous work mainly focused on reducing quantization errors of weights and activations, whereby a series of approximation methods and sophisticated training tricks have been proposed. In this work, we make several observations that challenge conventional wisdom. We revisit some commonly used techniques, such as scaling factors and custom gradients, and show that these methods are not crucial in training well-performing BNNs. On the contrary, we suggest several design principles for BNNs based on the insights learned and demonstrate that highly accurate BNNs can be trained from scratch with a simple training strategy. We propose a new BNN architecture BinaryDenseNet, which significantly surpasses all existing 1-bit CNNs on ImageNet without tricks. In our experiments, BinaryDenseNet achieves 18.6% and 7.6% relative improvement over the well-known XNOR-Network and the current state-of-the-art Bi-Real Net in terms of top-1 accuracy on ImageNet, respectively.
We propose Scheduled Auxiliary Control (SAC-X), a new learning paradigm in the context of Reinforcement Learning (RL). SAC-X enables learning of complex behaviors - from scratch - in the presence of multiple sparse reward signals. To this end, the ag ent is equipped with a set of general auxiliary tasks, that it attempts to learn simultaneously via off-policy RL. The key idea behind our method is that active (learned) scheduling and execution of auxiliary policies allows the agent to efficiently explore its environment - enabling it to excel at sparse reward RL. Our experiments in several challenging robotic manipulation settings demonstrate the power of our approach.
Neural networks are a powerful class of nonlinear functions that can be trained end-to-end on various applications. While the over-parametrization nature in many neural networks renders the ability to fit complex functions and the strong representati on power to handle challenging tasks, it also leads to highly correlated neurons that can hurt the generalization ability and incur unnecessary computation cost. As a result, how to regularize the network to avoid undesired representation redundancy becomes an important issue. To this end, we draw inspiration from a well-known problem in physics -- Thomson problem, where one seeks to find a state that distributes N electrons on a unit sphere as evenly as possible with minimum potential energy. In light of this intuition, we reduce the redundancy regularization problem to generic energy minimization, and propose a minimum hyperspherical energy (MHE) objective as generic regularization for neural networks. We also propose a few novel variants of MHE, and provide some insights from a theoretical point of view. Finally, we apply neural networks with MHE regularization to several challenging tasks. Extensive experiments demonstrate the effectiveness of our intuition, by showing the superior performance with MHE regularization.
A common approach to define convolutions on meshes is to interpret them as a graph and apply graph convolutional networks (GCNs). Such GCNs utilize isotropic kernels and are therefore insensitive to the relative orientation of vertices and thus to th e geometry of the mesh as a whole. We propose Gauge Equivariant Mesh CNNs which generalize GCNs to apply anisotropic gauge equivariant kernels. Since the resulting features carry orientation information, we introduce a geometric message passing scheme defined by parallel transporting features over mesh edges. Our experiments validate the significantly improved expressivity of the proposed model over conventional GCNs and other methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا