ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental techniques to study the $gamma$ process for nuclear astrophysics at the Cologne accelerator laboratory

46   0   0.0 ( 0 )
 نشر من قبل Felix Heim
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The nuclear astrophysics setup at the Institute for Nuclear Physics, University of Cologne, Germany is dedicated to measurements of total and partial cross sections of charged-particle induced reactions at astrophysically relevant energies. These observables are key ingredients for reaction network calculations of various stellar scenarios, and crucial for the understanding of the nucleosynthesis of elements. The experiments utilize the high-efficiency $gamma$-ray spectrometer HORUS, and the 10 MV FN-Tandem accelerator. An updated target chamber as well as further experimental methods established in the last years will be presented which allow to measure cross sections down to the nb region. The reliability of the measured cross sections is proven by a $^{89}$Y(p,$gamma$)$^{90}$Zr commissioning experiment. Additionally, an application for nuclear astrophysics will be presented. The results of a $^{93}$Nb(p,$gamma$)$^{94}$Mo experiment will be discussed as well as their deviations compared to formerly reported results.

قيم البحث

اقرأ أيضاً

A JINA/VISTARS r-process campaign was completed at the A1900 Fragment Separator of the National Superconducting Cyclotron Laboratory in the fall of 2005. The purpose of the campaign was the measurement of the beta-decay half-lives and beta-delayed ne utron-emission probabilities of different unknown neutron-rich nuclei participating in the r-process. Details of this campaign will be presented.
Low-background experiments with stable ion beams are an important tool for putting the model of stellar hydrogen, helium, and carbon burning on a solid experimental foundation. The pioneering work in this regard has been done by the LUNA collaboratio n at Gran Sasso, using a 0.4 MV accelerator. In the present contribution, the status of the project for a higher-energy underground accelerator is reviewed. Two tunnels of the Felsenkeller underground site in Dresden, Germany, are currently being refurbished for the installation of a 5 MV high-current Pelletron accelerator. Construction work is on schedule and expected to complete in August 2017. The accelerator will provide intense, 50 uA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.
The FREIA Laboratory at Uppsala University focuses on superconducting technology and accelerator development. It actively supports the development of the European Spallation Source, CERN, and MAX IV, among others. FREIA has developed test facilities for superconducting accelerator technology such as a double-cavity horizontal test cryostat, a vertical cryostat with a novel magnetic field compensation scheme, and a test stand for short cryomodules. Accelerating cavities have been tested in the horizontal cryostat, crab-cavities in the vertical cryostat, and cryomodules for ESS on the cryomodule test stand. High power radio-frequency amplifier prototypes based on vacuum tube technology were developed for driving spoke cavities. Solid-state amplifiers and power combiners are under development for future projects. We present the status of the FREIA Laboratory complemented with results of recent projects and future prospects.
The Edwards Accelerator Laboratory at Ohio University is the hub for a vibrant program in low energy nuclear physics. Research performed with the labs 4.5MV tandem accelerator spans a variety of topics, including nuclear astrophysics, nuclear structu re, nuclear energy, homeland security, and materials science. The Edwards Lab hosts a variety of capabilities, including unique features such as the beam swinger with neutron time-of-flight tunnel and the integrated condensed matter physics facility, enabling experiments to be performed with low-to-medium mass stable ion beams using charged-particle, gamma, and neutron spectroscopy. This article provides an overview of the current and near-future research program in low energy nuclear physics at Ohio University, including a brief discussion of the present and planned technical capabilities.
We present a facility for direct measurements at low and very low energies typical for nuclear astrophysics (NA). The facility consists of a small and robust tandem accelerator where irradiations are made, and an ultra-low background laboratory locat ed in a salt mine where very low radio-activities can be measured. Both belong to Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH) but are situated 120 km apart. Their performances are shown using a few cases where they are used. We argue that this facility is competitive for the study of nuclear reactions induced by alpha particles and by light ions at energies close or down into the Gamow windows. A good case study was the 13C+12C fusion reaction, where the proton evaporation channel leads to an activity with T1/2 = 15 h, appropriate for samples transfer to the salt mine. Measurements were done using the thick target method down into the Gamow window for energies from Ecm=2.2 MeV, which is the lowest energy ever reached for this reaction, up to 5.3 MeV, using 13C beams from the 3 MV tandetron. The activation method allowed us to determine a cross section of the order of 100 pb. Reactions induced by alphas were also measured. Proton induced resonant reactions were used to calibrate the accelerator terminal voltage. Some results of the experiemnts characterizing the assembly are sown and discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا