ترغب بنشر مسار تعليمي؟ اضغط هنا

A facility for direct measurements for nuclear astrophysics at IFIN-HH -- a 3 MV tandem accelerator and an ultra-low background laboratory

60   0   0.0 ( 0 )
 نشر من قبل Livius Trache
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a facility for direct measurements at low and very low energies typical for nuclear astrophysics (NA). The facility consists of a small and robust tandem accelerator where irradiations are made, and an ultra-low background laboratory located in a salt mine where very low radio-activities can be measured. Both belong to Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH) but are situated 120 km apart. Their performances are shown using a few cases where they are used. We argue that this facility is competitive for the study of nuclear reactions induced by alpha particles and by light ions at energies close or down into the Gamow windows. A good case study was the 13C+12C fusion reaction, where the proton evaporation channel leads to an activity with T1/2 = 15 h, appropriate for samples transfer to the salt mine. Measurements were done using the thick target method down into the Gamow window for energies from Ecm=2.2 MeV, which is the lowest energy ever reached for this reaction, up to 5.3 MeV, using 13C beams from the 3 MV tandetron. The activation method allowed us to determine a cross section of the order of 100 pb. Reactions induced by alphas were also measured. Proton induced resonant reactions were used to calibrate the accelerator terminal voltage. Some results of the experiemnts characterizing the assembly are sown and discussed.



قيم البحث

اقرأ أيضاً

The field of nuclear astrophysics is devoted to the study of the creation of the chemical elements. By nature, it is deeply intertwined with the physics of the Sun. The nuclear reactions of the proton-proton cycle of hydrogen burning, including the 3 He({alpha},{gamma})7Be reaction, provide the necessary nuclear energy to prevent the gravitational collapse of the Sun and give rise to the by now well-studied pp, 7Be, and 8B solar neutrinos. The not yet measured flux of 13N, 15O, and 17F neutrinos from the carbon-nitrogen-oxygen cycle is affected in rate by the 14N(p,{gamma})15O reaction and in emission profile by the 12C(p,{gamma})13N reaction. The nucleosynthetic output of the subsequent phase in stellar evolution, helium burning, is controlled by the 12C({alpha},{gamma})16O reaction. In order to properly interpret the existing and upcoming solar neutrino data, precise nuclear physics information is needed. For nuclear reactions between light, stable nuclei, the best available technique are experiments with small ion accelerators in underground, low-background settings. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso/Italy, using a 0.4 MV accelerator. The present contribution reports on a higher-energy, 5.0 MV, underground accelerator in the Felsenkeller underground site in Dresden/Germany. Results from {gamma}-ray, neutron, and muon background measurements in the Felsenkeller underground site in Dresden, Germany, show that the background conditions are satisfactory for nuclear astrophysics purposes. The accelerator is in the commissioning phase and will provide intense, up to 50{mu}A, beams of 1H+, 4He+ , and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.
The gamma-ray background in the indoor environment has been measured up to 3 MeV to evaluate the feasibility of studying low cross-section (nanobarn to picobarn range) astrophysical reactions at the Facility for Research in Experimental Nuclear Astro physics (FRENA), Saha Institute of Nuclear Physics, Kolkata. An n-type coaxial HPGe detector with 20% relative efficiency has been placed at different locations in the accelerator and beam halls for the measurement. The measured activity has been compared with that at two laboratories (with standard brick walls) with and without passive and active radiation shielding. As the halls at FRENA are well shielded by concrete, the contribution of the shielding in indoor gamma-ray background has been delineated by simulation using a 4p-geometry model.
The Advanced Superconducting Test Acccelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration sectio n consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beamlines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750-MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5-GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.
Muon-based facilities offer unique potential to provide capabilities at both the Intensity Frontier with Neutrino Factories and the Energy Frontier with Muon Colliders. They rely on a novel technology with challenging parameters, for which the feasib ility is currently being evaluated by the Muon Accelerator Program (MAP). A realistic scenario for a complementary series of staged facilities with increasing complexity and significant physics potential at each stage has been developed. It takes advantage of and leverages the capabilities already planned for Fermilab, especially the strategy for long-term improvement of the accelerator complex being initiated with the Proton Improvement Plan (PIP-II) and the Long Baseline Neutrino Facility (LBNF). Each stage is designed to provide an R&D platform to validate the technologies required for subsequent stages. The rationale and sequence of the staging process and the critical issues to be addressed at each stage, are presented.
Low-background experiments with stable ion beams are an important tool for putting the model of stellar hydrogen, helium, and carbon burning on a solid experimental foundation. The pioneering work in this regard has been done by the LUNA collaboratio n at Gran Sasso, using a 0.4 MV accelerator. In the present contribution, the status of the project for a higher-energy underground accelerator is reviewed. Two tunnels of the Felsenkeller underground site in Dresden, Germany, are currently being refurbished for the installation of a 5 MV high-current Pelletron accelerator. Construction work is on schedule and expected to complete in August 2017. The accelerator will provide intense, 50 uA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا