ترغب بنشر مسار تعليمي؟ اضغط هنا

Inverse-designed photon extractors for optically addressable defect qubits

74   0   0.0 ( 0 )
 نشر من قبل Srivatsa Chakravarthi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solid-state defect qubit systems with spin-photon interfaces show great promise for quantum information and metrology applications. Photon collection efficiency, however, presents a major challenge for defect qubits in high refractive index host materials. Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface including spectral response, photon polarization and collection mode. Further, the design process can incorporate additional constraints, such as fabrication tolerance and material processing limitations. Here we design and demonstrate a compact hybrid gallium phosphide on diamond inverse-design planar dielectric structure coupled to single near-surface nitrogen-vacancy centers formed by implantation and annealing. We observe device operation near the theoretical limit and measure up to a 14-fold broadband enhancement in photon extraction efficiency. We expect that such inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, sensing and efficient heralded entanglement schemes.

قيم البحث

اقرأ أيضاً

Silicon photonics is becoming a leading technology in photonics, displacing traditional fiber optic transceivers in long-haul and intra-data-center links and enabling new applications such as solid-state LiDAR (Light Detection and Ranging) and optica l machine learning. Further improving the density and performance of silicon photonics, however, has been challenging, due to the large size and limited performance of traditional semi-analytically designed components. Automated optimization of photonic devices using inverse design is a promising path forward but has until now faced difficulties in producing designs that can be fabricated reliably at scale. Here we experimentally demonstrate four inverse-designed devices - a spatial mode multiplexer, wavelength demultiplexer, 50-50 directional coupler, and 3-way power splitter - made successfully in a commercial silicon photonics foundry. These devices are efficient, robust to fabrication variability, and compact, with footprints only a few micrometers across. They pave the way forward for the widespread practical use of inverse design.
Diamond hosts optically active color centers with great promise in quantum computation, networking, and sensing. Realization of such applications is contingent upon the integration of color centers into photonic circuits. However, current diamond qua ntum optics experiments are restricted to single devices and few quantum emitters because fabrication constraints limit device functionalities, thus precluding color center integrated photonic circuits. In this work, we utilize inverse design methods to overcome constraints of cutting-edge diamond nanofabrication methods and fabricate compact and robust diamond devices with unique specifications. Our design method leverages advanced optimization techniques to search the full parameter space for fabricable device designs. We experimentally demonstrate inverse-designed photonic free-space interfaces as well as their scalable integration with two vastly different devices: classical photonic crystal cavities and inverse-designed waveguide-splitters. The multi-device integration capability and performance of our inverse-designed diamond platform represents a critical advancement toward integrated diamond quantum optical circuits.
Modern microelectronic processors have migrated towards parallel computing architectures with many-core processors. However, such expansion comes with diminishing returns exacted by the high cost of data movement between individual processors. The us e of optical interconnects has burgeoned as a promising technology that can address the limits of this data transfer. While recent pushes to enhance optical communication have focused on developing wavelength-division multiplexing technology, this approach will eventually saturate the usable bandwidth, and new dimensions of data transfer will be paramount to fulfill the ever-growing need for speed. Here we demonstrate an integrated intra- and inter-chip multi-dimensional communication scheme enabled by photonic inverse design. Using broad-band inverse-designed mode-division multiplexers, we combine wavelength- and mode- multiplexing of data at a rate exceeding terabit-per-second. Crucially, as we take advantage of an orthogonal optical basis, our approach is inherently scalable to a multiplicative enhancement over the current state of the art.
Spin-bearing molecules are promising building blocks for quantum technologies as they can be chemically tuned, assembled into scalable arrays, and readily incorporated into diverse device architectures. In molecular systems, optically addressing grou nd-state spins would enable a wide range of applications in quantum information science, as has been demonstrated for solid-state defects. However, this important functionality has remained elusive for molecules. Here, we demonstrate such optical addressability in a series of synthesized organometallic, chromium(IV) molecules. These compounds display a ground-state spin that can be initialized and read out using light, and coherently manipulated with microwaves. In addition, through atomistic modification of the molecular structure, we tune the spin and optical properties of these compounds, paving the way for designer quantum systems synthesized from the bottom-up.
Quantum technology has grown out of quantum information theory and now provides a valuable tool that researchers from numerous fields can add to their toolbox of research methods. To date, various systems have been exploited to promote the applicatio n of quantum information processing. The systems that can be used for quantum technology include superconducting circuits, ultra-cold atoms, trapped ions, semiconductor quantum dots, and solid-state spins and emitters. In this review, we will discuss the state of the art on material platforms for spin-based quantum technology, with a focus on the progress in solid-state spins and emitters in several leading host materials, including diamond, silicon carbide, boron nitride, silicon, two-dimensional semiconductors, and other materials. We will highlight how first-principles calculations can serve as an exceptionally robust tool for finding the novel defect qubits and single photon emitters in solids, through detailed predictions of the electronic, magnetic and optical properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا