ترغب بنشر مسار تعليمي؟ اضغط هنا

Latent-space time evolution of non-intrusive reduced-order models using Gaussian process emulation

68   0   0.0 ( 0 )
 نشر من قبل Themistoklis Botsas
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-intrusive reduced-order models (ROMs) have recently generated considerable interest for constructing computationally efficient counterparts of nonlinear dynamical systems emerging from various domain sciences. They provide a low-dimensional emulation framework for systems that may be intrinsically high-dimensional. This is accomplished by utilizing a construction algorithm that is purely data-driven. It is no surprise, therefore, that the algorithmic advances of machine learning have led to non-intrusive ROMs with greater accuracy and computational gains. However, in bypassing the utilization of an equation-based evolution, it is often seen that the interpretability of the ROM framework suffers. This becomes more problematic when black-box deep learning methods are used which are notorious for lacking robustness outside the physical regime of the observed data. In this article, we propose the use of a novel latent-space interpolation algorithm based on Gaussian process regression. Notably, this reduced-order evolution of the system is parameterized by control parameters to allow for interpolation in space. The use of this procedure also allows for a continuous interpretation of time which allows for temporal interpolation. The latter aspect provides information, with quantified uncertainty, about full-state evolution at a finer resolution than that utilized for training the ROMs. We assess the viability of this algorithm for an advection-dominated system given by the inviscid shallow water equations.



قيم البحث

اقرأ أيضاً

In this work, we develop Non-Intrusive Reduced Order Models (NIROMs) that combine Proper Orthogonal Decomposition (POD) with a Radial Basis Function (RBF) interpolation method to construct efficient reduced order models for time-dependent problems ar ising in large scale environmental flow applications. The performance of the POD-RBF NIROM is compared with a traditional nonlinear POD (NPOD) model by evaluating the accuracy and robustness for test problems representative of riverine flows. Different greedy algorithms are studied in order to determine a near-optimal distribution of interpolation points for the RBF approximation. A new power-scaled residual greedy (psr-greedy) algorithm is proposed to address some of the primary drawbacks of the existing greedy approaches. The relative performances of these greedy algorithms are studied with numerical experiments using realistic two-dimensional (2D) shallow water flow applications involving coastal and riverine dynamics.
Advection-dominated dynamical systems, characterized by partial differential equations, are found in applications ranging from weather forecasting to engineering design where accuracy and robustness are crucial. There has been significant interest in the use of techniques borrowed from machine learning to reduce the computational expense and/or improve the accuracy of predictions for these systems. These rely on the identification of a basis that reduces the dimensionality of the problem and the subsequent use of time series and sequential learning methods to forecast the evolution of the reduced state. Often, however, machine-learned predictions after reduced-basis projection are plagued by issues of stability stemming from incomplete capture of multiscale processes as well as due to error growth for long forecast durations. To address these issues, we have developed a emph{non-autoregressive} time series approach for predicting linear reduced-basis time histories of forward models. In particular, we demonstrate that non-autoregressive counterparts of sequential learning methods such as long short-term memory (LSTM) considerably improve the stability of machine-learned reduced-order models. We evaluate our approach on the inviscid shallow water equations and show that a non-autoregressive variant of the standard LSTM approach that is bidirectional in the PCA components obtains the best accuracy for recreating the nonlinear dynamics of partial observations. Moreover---and critical for many applications of these surrogates---inference times are reduced by three orders of magnitude using our approach, compared with both the equation-based Galerkin projection method and the standard LSTM approach.
We introduce Latent Gaussian Process Regression which is a latent variable extension allowing modelling of non-stationary multi-modal processes using GPs. The approach is built on extending the input space of a regression problem with a latent variab le that is used to modulate the covariance function over the training data. We show how our approach can be used to model multi-modal and non-stationary processes. We exemplify the approach on a set of synthetic data and provide results on real data from motion capture and geostatistics.
Optical scatterometry is a method to measure the size and shape of periodic micro- or nanostructures on surfaces. For this purpose the geometry parameters of the structures are obtained by reproducing experimental measurement results through numerica l simulations. We compare the performance of Bayesian optimization to different local minimization algorithms for this numerical optimization problem. Bayesian optimization uses Gaussian-process regression to find promising parameter values. We examine how pre-computed simulation results can be used to train the Gaussian process and to accelerate the optimization.
A simple and widely adopted approach to extend Gaussian processes (GPs) to multiple outputs is to model each output as a linear combination of a collection of shared, unobserved latent GPs. An issue with this approach is choosing the number of latent processes and their kernels. These choices are typically done manually, which can be time consuming and prone to human biases. We propose Gaussian Process Automatic Latent Process Selection (GP-ALPS), which automatically chooses the latent processes by turning off those that do not meaningfully contribute to explaining the data. We develop a variational inference scheme, assess the quality of the variational posterior by comparing it against the gold standard MCMC, and demonstrate the suitability of GP-ALPS in a set of preliminary experiments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا