ترغب بنشر مسار تعليمي؟ اضغط هنا

E3-targetPred: Prediction of E3-Target Proteins Using Deep Latent Space Encoding

48   0   0.0 ( 0 )
 نشر من قبل Shujaat Khan Engr
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding E3 ligase and target substrate interactions are important for cell biology and therapeutic development. However, experimental identification of E3 target relationships is not an easy task due to the labor-intensive nature of the experiments. In this article, a sequence-based E3-target prediction model is proposed for the first time. The proposed framework utilizes composition of k-spaced amino acid pairs (CKSAAP) to learn the relationship between E3 ligases and their target protein. A class separable latent space encoding scheme is also devised that provides a compressed representation of feature space. A thorough ablation study is performed to identify an optimal gap size for CKSAAP and the number of latent variables that can represent the E3-target relationship successfully. The proposed scheme is evaluated on an independent dataset for a variety of standard quantitative measures. In particular, it achieves an average accuracy of $70.63%$ on an independent dataset. The source code and datasets used in the study are available at the authors GitHub page (https://github.com/psychemistz/E3targetPred).



قيم البحث

اقرأ أيضاً

The knowledge of potentially druggable binding sites on proteins is an important preliminary step towards the discovery of novel drugs. The computational prediction of such areas can be boosted by following the recent major advances in the deep learn ing field and by exploiting the increasing availability of proper data. In this paper, a novel computational method for the prediction of potential binding sites is proposed, called DeepSurf. DeepSurf combines a surface-based representation, where a number of 3D voxelized grids are placed on the proteins surface, with state-of-the-art deep learning architectures. After being trained on the large database of scPDB, DeepSurf demonstrates superior results on three diverse testing datasets, by surpassing all its main deep learning-based competitors, while attaining competitive performance to a set of traditional non-data-driven approaches.
90 - Sheng Wang , Zhen Li , Yizhou Yu 2017
Computational elucidation of membrane protein (MP) structures is challenging partially due to lack of sufficient solved structures for homology modeling. Here we describe a high-throughput deep transfer learning method that first predicts MP contacts by learning from non-membrane proteins (non-MPs) and then predicting three-dimensional structure models using the predicted contacts as distance restraints. Tested on 510 non-redundant MPs, our method has contact prediction accuracy at least 0.18 better than existing methods, predicts correct folds for 218 MPs (TMscore at least 0.6), and generates three-dimensional models with RMSD less than 4 Angstrom and 5 Angstrom for 57 and 108 MPs, respectively. A rigorous blind test in the continuous automated model evaluation (CAMEO) project shows that our method predicted high-resolution three-dimensional models for two recent test MPs of 210 residues with RMSD close to 2 Angstrom. We estimated that our method could predict correct folds for between 1,345 and 1,871 reviewed human multi-pass MPs including a few hundred new folds, which shall facilitate the discovery of drugs targeting at membrane proteins.
Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.
105 - Ke Liu 2017
A deep neural network based architecture was constructed to predict amino acid side chain conformation with unprecedented accuracy. Amino acid side chain conformation prediction is essential for protein homology modeling and protein design. Current w idely-adopted methods use physics-based energy functions to evaluate side chain conformation. Here, using a deep neural network architecture without physics-based assumptions, we have demonstrated that side chain conformation prediction accuracy can be improved by more than 25%, especially for aromatic residues compared with current standard methods. More strikingly, the prediction method presented here is robust enough to identify individual conformational outliers from high resolution structures in a protein data bank without providing its structural factors. We envisage that our amino acid side chain predictor could be used as a quality check step for future protein structure model validation and many other potential applications such as side chain assignment in Cryo-electron microscopy, crystallography model auto-building, protein folding and small molecule ligand docking.
517 - V. I. Romanovsky 2007
The branching fraction for the decay $K^{-} to pi^{0} e bar u$ is measured using in-flight decays detected with {bf ISTRA+} setup working at the 25 GeV negative secondary beam of the U-70 PS:linebreak $Br_{K_{e3}}= (5.124 pm 0.009 (stat) pm 0.029(no rm) pm 0.030(syst))%$. From this value the $|V_{us}|$ element of the CKM matrix is extracted, using previously measured $f_{+}(t)$ form factor: $|V_{us}|=0.227 pm 0.002$. The results are in agreement with recent measurements by BNL E865, FNAL KTeV, KLOE.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا