ترغب بنشر مسار تعليمي؟ اضغط هنا

Definable groups in topological fields with a generic derivation

83   0   0.0 ( 0 )
 نشر من قبل Francoise Point Dr
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Francoise Point




اسأل ChatGPT حول البحث

We continue the study of a class of topological $mathcal{L}$-fields endowed with a generic derivation $delta$, focussing on describing definable groups. We show that one can associate to an $mathcal{L}_{delta}$ definable group a type $mathcal{L}$-definable topological group. We use the group configuration tool in o-minimal structures as developed by K. Peterzil.



قيم البحث

اقرأ أيضاً

113 - Franc{c}oise Point 2017
For certain theories of existentially closed topological differential fields, we show that there is a strong relationship between $mathcal Lcup{D}$-definable sets and their $mathcal L$-reducts, where $mathcal L$ is a relational expansion of the field language and $D$ a symbol for a derivation. This enables us to associate with an $mathcal Lcup{D}$-definable group in models of such theories, a local $mathcal L$-definable group. As a byproduct, we show that in closed ordered differential fields, one has the descending chain condition on centralisers.
For a group $G$ definable in a first order structure $M$ we develop basic topological dynamics in the category of definable $G$-flows. In particular, we give a description of the universal definable $G$-ambit and of the semigroup operation on it. We find a natural epimorphism from the Ellis group of this flow to the definable Bohr compactification of $G$, that is to the quotient $G^*/{G^*}^{00}_M$ (where $G^*$ is the interpretation of $G$ in a monster model). More generally, we obtain these results locally, i.e. in the category of $Delta$-definable $G$-flows for any fixed set $Delta$ of formulas of an appropriate form. In particular, we define local connected components ${G^*}^{00}_{Delta,M}$ and ${G^*}^{000}_{Delta,M}$, and show that $G^*/{G^*}^{00}_{Delta,M}$ is the $Delta$-definable Bohr compactification of $G$. We also note that some deeper arguments from the topological dynamics in the category of externally definable $G$-flows can be adapted to the definable context, showing for example that our epimorphism from the Ellis group to the $Delta$-definable Bohr compactification factors naturally yielding a continuous epimorphism from the $Delta$-definable generalized Bohr compactification to the $Delta$-definable Bohr compactification of $G$. Finally, we propose to view certain topological-dynamic and model-theoretic invariants as Polish structures which leads to some observations and questions.
We prove several theorems relating amenability of groups in various categories (discrete, definable, topological, automorphism group) to model-theoretic invariants (quotients by connected components, Lascar Galois group, G-compactness, ...). For exam ple, if $M$ is a countable, $omega$-categorical structure and $Aut(M)$ is amenable, as a topological group, then the Lascar Galois group $Gal_{L}(T)$ of the theory $T$ of $M$ is compact, Hausdorff (also over any finite set of parameters), that is $T$ is G-compact. An essentially special case is that if $Aut(M)$ is extremely amenable, then $Gal_{L}(T)$ is trivial, so, by a theorem of Lascar, the theory $T$ can be recovered from its category $Mod(T)$ of models. On the side of definable groups, we prove for example that if $G$ is definable in a model $M$, and $G$ is definably amenable, then the connected components ${G^{*}}^{00}_{M}$ and ${G^{*}}^{000}_{M}$ coincide, answering positively a question from an earlier paper of the authors. We also take the opportunity to further develop the model-theoretic approach to topological dynamics, obtaining for example some new invariants for topological groups, as well as allowing a uniform approach to the theorems above and the various categories.
In this paper we completely characterize solvable real Lie groups definable in o-minimal expansions of the real field.
We prove that the theory of the $p$-adics ${mathbb Q}_p$ admits elimination of imaginaries provided we add a sort for ${rm GL}_n({mathbb Q}_p)/{rm GL}_n({mathbb Z}_p)$ for each $n$. We also prove that the elimination of imaginaries is uniform in $p$. Using $p$-adic and motivic integration, we deduce the uniform rationality of certain formal zeta functions arising from definable equivalence relations. This also yields analogous results for definable equivalence relations over local fields of positive characteristic. The appendix contains an alternative proof, using cell decomposition, of the rationality (for fixed $p$) of these formal zeta functions that extends to the subanalytic context. As an application, we prove rationality and uniformity results for zeta functions obtained by counting twist isomorphism classes of irreducible representations of finitely generated nilpotent groups; these are analogous to similar results of Grunewald, Segal and Smith and of du Sautoy and Grunewald for subgroup zeta functions of finitely generated nilpotent groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا