ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological phase transition and single/multi anyon dynamics of $Z_2$ spin liquid

77   0   0.0 ( 0 )
 نشر من قبل Zheng Yan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Among the quantum many-body models that host anyon excitation and topological orders, quantum dimer models (QDM) provide a unique playground for studying the relation between single-anyon and multi-anyon continuum spectra. However, as the prototypical correlated system with local constraints, the generic solution of QDM at different lattice geometry and parameter regimes is still missing due to the lack of controlled methodologies. Here we obtain, via the newly developed sweeping cluster quantum Monte Carlo algorithm, the excitation spectra in different phases of the triangular lattice QDM. Our results reveal the single vison excitations inside the $Z_2$ quantum spin liquid (QSL) and its condensation towards the $sqrt{12}timessqrt{12}$ valence bond solid (VBS), and demonstrate the translational symmetry fractionalization and emergent O(4) symmetry at the QSL-VBS transition. We find the single vison excitations, whose convolution qualitatively reproduces the dimer spectra, are not free but subject to interaction effects throughout the transition. The nature of the VBS with its O(4) order parameters are unearthed in full scope. Our approach opens the avenue for generic solution of the static and dynamic properties of QDMs and has relevance towards the realization and detection of fractional excitations in programmable quantum simulators.

قيم البحث

اقرأ أيضاً

Using the density-matrix renormalization group method for the ground state and excitations of the Shastry-Sutherland spin model, we demonstrate the existence of a narrow quantum spin liquid phase between the previously known plaquette-singlet and ant iferromagnetic states. Our conclusions are based on finite-size scaling of excited level crossings and order parameters. Together with previous results on candidate models for deconfined quantum criticality and spin liquid phases, our results point to a unified quantum phase diagram where the deconfined quantum-critical point separates a line of first-order transitions and a gapless spin liquid phase. The frustrated Shastry-Sutherland model is close to the critical point but slightly inside the spin liquid phase, while previously studied unfrustrated models cross the first-order line. We also argue that recent heat capacity measurements in SrCu$_2$(BO$_3$)$_2$ show evidence of the proposed spin liquid at pressures between 2.6 and 3 GPa.
We investigate the phase behavior of a single-component system in 3 dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distanc e, and a hard-core repulsion at a short distance, similar to potentials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed [Nature {bf 409}, 692 (2001)] that, even with no evidences of the density anomaly, the phase diagram has two first-order fluid-fluid phase transitions, one ending in a gas--low-density liquid (LDL) critical point, and the other in a gas--high-density liquid (HDL) critical point, with a LDL-HDL phase transition at low temperatures. Here we use integral equation calculations to explore the 3-parameter space of the soft-core potential and we perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase diagram we analyze the structure of the crystal phase and find that, within the considered range of densities, the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We suggest that this absence is related to the presence of only one stable crystal structure.
We investigate the spin-1/2 Heisenberg antiferromagnet on the kagome lattice with breathing anisotropy (i.e. with weak and strong triangular units), constructing an improved simplex Resonating Valence Bond (RVB) ansatz by successive applications (up to three times) of local quantum gates which implement a filtering operation on the bare nearest-neighbor RVB state. The resulting Projected Entangled Pair State involves a small number of variational parameters (only one at each level of application) and preserves full lattice and spin-rotation symmetries. Despite its simple analytic form, the simplex RVB provides very good variational energies at strong and even intermediate breathing anisotropy. We show that it carries $Z_2$ topological order which does not fade away under the first few applications of the quantum gates, suggesting that the RVB topological spin liquid becomes a competing ground state candidate for the kagome antiferromagnet at large breathing anisotropy.
We study the quantum phase transition from a Dirac spin liquid to an antiferromagnet driven by condensing monopoles with spin quantum numbers. We describe the transition in field theory by tuning a fermion interaction to condense a spin-Hall mass, wh ich in turn allows the appropriate monopole operators to proliferate and confine the fermions. We compute various critical exponents at the quantum critical point (QCP), including the scaling dimensions of monopole operators by using the state-operator correspondence of conformal field theory. We find that the degeneracy of monopoles in QED3 is lifted and yields a non-trivial monopole hierarchy at the QCP. In particular, the lowest monopole dimension is found to be smaller than that of QED3 using a large $N_f$ expansion where $2N_f$ is the number of fermion flavors. For the minimal magnetic charge, this dimension is $0.39N_f$ at leading order. We also study the QCP between Dirac and chiral spin liquids, which allows us to test a conjectured duality to a bosonic CP$^1$ theory. Finally, we discuss the implications of our results for quantum magnets on the Kagome lattice.
Quantum many-body edge and extended magnon excitations from the 1/3 -- plateau of the anisotropic Heisenberg model on an open AB$_2$ chain in a magnetic field $h$ are unveiled using the density matrix renormalization group and exact diagonalization. By tuning both the anisotropy and $h$ in the rich phase diagram, the edge states penetrate in the bulk, whose gap closes in a symmetry-protected topological Kosterlitz-Thouless transition. Also, we witness the squeezed chain effect, the breaking of the edge states degeneracy, and a topological change of the excitations from gapped magnons with quadratic long-wavelength dispersion to a linear spinon dispersion in the Luttinger liquid gapless phase as the anisotropy $lambda$ approaches the critical point from the $lambda>0$ side of the phase diagram.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا